

Basics in Compiler Design

.

Basics in Compiler Design

Kunal Dey

Dr. Gokul Thanigaivasan

Dr. Santosh S Chowhan

KRISHNA NAGAR, DELHI

Regd. Office:Regd. Office:Regd. Office:Regd. Office:Regd. Office:

F-10/24, East Krishna Nagar, Near Vijay Chowk, Delhi-110051

Ph. No: +91-11-79669196, +91-9899073222

E-mail: info@booksarcade.co.in, booksarcade.pub@gmail.com

Website: www.booksarcade.co.in

International Standard Book Number-13: 978-81-19199-24-2

Year of Publication 2023

Printed and bound by: Global Printing Services, Delhi

10 9 8 7 6 5 4 3 2 1

This book contains information obtained from highly regarded resources. Copyright for individual articles remains
with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all
materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereinafter invented, including photocopying, microfilming and recording, or any
information storage or retrieval system, without permission from the publishers.

For permission to photocopy or use material electronically from this work please access booksarcade.co.in

Basics in Compiler Design

© RESERVED

Kunal Dey

Dr. Gokul Thanigaivasan

Dr. Santosh S Chowhan

CONTENTS

Chapter 1. Introduction to Compiler Design .. 1

—Kunal Dey

Chapter 2. Static and Dynamic Scoping ... 11

—Ghouse Basha M A

Chapter 3. Error Detection and Recovery in Compiler .. 13

—Dr. Gokul Thanigaivasan

Chapter 4. Code Optimization in Compiler Design ... 17

—Dr. Santosh S Chowhan

Chapter 5. The Lexical Analyzer ... 29

—Dr. Thirukumaran Subbiramani

Chapter 6. Syntax Diagrams .. 38

—Dr. Uthama Kumar A

Chapter 7. Bootstrapping ... 43

—Dr. Thirukumaran Subbiramani

Chapter 8. Regular Expressions .. 49

—Kunal Dey

Chapter 9. Predictive Parsing .. 61

—Ghouse Basha M A

Chapter 10. Conflicts in SLR Parse Tables .. 81

—Dr. Gokul Thanigaivasan

Chapter 11. Scopes and Symbol Tables .. 89

—Dr. Santosh S Chowhan

Chapter 12. Interpretation ... 94

—Dr. Thirukumaran Subbiramani

Chapter 13. Intermediate-Code Generation ... 106

—Dr. Uthama Kumar A

Chapter 14. Runtime Environments in Compiler Design ... 118

—Dr. Thirukumaran Subbiramani

Chapter 15. An Overview of the Scanning in Compiler Design ... 135

—Dr. Uthama Kumar A

1 Basics in Compiler Design

CHAPTER 1

INTRODUCTION TO COMPILER DESIGN

Kunal Dey

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- d.kunal@jainuniversity.ac.in

Basic Concepts of Compiler Design

This chapter includes the fundamental ideas and background of compiler design. It includes

compiler's structural properties, over the formal grammar and parse trees, and construct a simple

recursive-descent expression compiler. However, before diving into the text, a word of

encouragement about this volume and the book as a whole seems pertinent. Once you are

knowledgeable about a compiler's overall structure, compiling programmers is not very

challenging to master. The key issue with a compiler is not the fact any one component is

difficult to grasp; rather, it is that there are so many elements and that you must first understand

the majority of them before either one of them makes sense.

Properties of a Good Compiler

The main quality of a good compiler is that it is effective in medical code. A compiler that
sometimes delivers flawed code is worthless; a compiler which thus produces flawed code just
once a year sometimes seems helpful but it is harmful. A compiler must fully adhere to the
language requirement to function. Users may even be grateful for the support when a subset,
superset, or even what is sometimes mockingly kept referring to as an "extendedsubset" of the
language is implemented, yet those same users will soon discover that the organizational
capabilities with such a compiler are considerably less portable than those created with a fully
conforming compiler. A competent compiler ought to also be able to handle programmes of
almost any size, as long as memory enables. This is a quality that is sometimes underestimated.
No sensible programmer, it would appear, uses more than 32 arguments in a technique or more
than 128 declarations in a block, and so one might assign a predetermined amount of disk space
in the compiler for each. However, it's important to remember that not only programmers create
programs. Although more than 32 arguments to a procedure appear overwhelming, even for a
created program, much information is generated by other programmes, and such generated
software may easily have more than 128 declarations in one blockof famous last words.

The implementation of automatically developed parsers and code generators often uses
extremely lengthy compared with the results, therefore any limitations on the number of
scenarios in a case or switch statement are unjustified. Programs of virtually any size may be
handled with the flexible memory space required at a very low-cost increase. Although not a
serious problem, compilation speed is a concern. Small applications should compile on
contemporary processors in under a second. Larger programming projects are often divided into
several, relatively tiny compilation units, such as components, library routines, and subprograms.
Although each of these compiling units may be recompiled following a programme change, this

2 Basics in Compiler Design

is often limited to the updated translation units alone. Additionally, compiler developers have
previously taken care to make their compilers linear in the input, which implies that the length of
the input file has no consequence on how long it takes to build a programme. Given that
produced programmes might be rather lengthy, this becomes especially crucial when they are
being assembled. Non-linearity in compilers might come from a variety of places. First of all, all
linear time parsing strategies are extremely awkward, but in the worst case, the input size for
worry-free parsing techniques may be cubic. Second, as the optimum code is often only
discovered by putting into consideration all feasible machine instruction combinations, many
code enhancements have the potential for exponential growth in the input size. Third, careless
memory use could lead to quadratic time consumption. Fortunately, all of these issues have
excellent linear-time solutions or heuristics. Nowadays, with the majority of computers having
gigabytes of main memory, compiler size is seldom ever a concern. However, when applications
use the compiler again with run time, as in just-in-time compilation, compiler size and acting
skills are crucial.

Portability and Retarget Ability

When running on several machine types with a little amount of time and effort, a programme is
said to be portable. Of course, everyone possesses their definition of what "a limited and
appropriate effort" is, but nowadays many applications can be migrated by just modifying the
make file to accommodate the local circumstances and rearchitecting. And often, even the
operation of local circumstance adaptability might be automated, for instance by using GNU's
autoconf. With compilers, machine reliance may exist greater heavily in the output than it does
in the programme itself. As a result, when we employ a compiler, we need to take into account
one again aspect of machine independence: how easily it can be customized to produce code for
other computers. This is known as the compiler optimization retarget ability, which must be
separated from its portability.

Good portability may be envisaged if the compiler is built in a known for its modern language in
a manner that is generally acceptable. Retargeting is accomplished by dramatically changing the
back-end; as a result, the work required to build a new back-end is inversely linked to the
potential to retarget. In this context, it's important to bear in mind that building a new back-end
doesn't always need to start from scratch. Of course, some of the code in a back-end is machine-
dependent, but the overwhelming is not. If correctly organized, certain components from other
back-ends may be used, and formalized machine descriptions may be used to construct further
components. This strategy may engineering materials for a huge enterprise's back end a modest
job. For a competent compiler writer with the right tools, building a back-end for a new machine
can take one to four programmer months. Machine descriptions might be hundreds of lines long
or thousands of lines long. This completes the first section of our introduction, having focused on
creating a compiler. In the remaining sections of this chapter, we address three more topics:
formal grammar, closure algorithms, and the development of translators through time.

A Short History of Compiler Construction

Three periods can be distinguished in the history of compiler construction: 1945-1960, 1960-
1975, and 1975–present. Of course, the years are approximate.

i. 1945–1960: Code Generation:

3 Basics in Compiler Design

During this period programming languages developed relatively slowly and machines were
idiosyncratic. The primary problem was how to generate code for a given machine. The problem
was exacerbated by the fact that assembly programming was held in high esteem, and high-level
languages and compilers were looked at with a mixture of suspicion and awe: using a compiler
was often called “automatic programming”. Proponents of high-level languages feared, not
without reason that the idea of high-level programming would never catch on if compilers
produced code that was less efficient than what assembly programmers produced by hand. The
first FORTRAN compiler, written by Sheridan et al. in 1959, optimized heavily and was far
ahead of its time in that respect.

ii. 1960–1975: Parsing:

The 1960s and 1970s saw a proliferation of new programming languages, and language
designers began to believe that having a compiler for a new language quickly was more
important than having one that generated very efficient code. This shifted the emphasis on
compiler construction from back-ends to front-ends. At the same time, studies in formal
languages revealed several powerful techniques that could be applied profitably in front-end
construction, notably in parser generation.

iii. 1975-Present: Code Generation and Code Optimization

From 1975 to the present, both the number of new languages proposed and the number of
different machine types in regular use decreased, which reduced the need for quick-and-
simple/quick-and-dirty compilers for new languages and/or machines. With the greatest turmoil
in language and machine design being over, people began to demand professional compilers that
were reliable, and efficient, both in use and in generated code, and preferably with pleasant user
interfaces. This called for more attention to the quality of the generated code, which was easier
now since with the slower change in machines the expected lifetime of a code generator
increased. Also, at the same time new paradigms in programming were developed, with
functional, logic, and distributed programming as the most prominent examples. Almost
invariably, the run-time requirements of the corresponding languages far exceeded those of the
imperative languages: automatic data allocation and deallocation, list comprehensions,
unification, remote procedure call, and many others, are features which require much run-time
effort that corresponds to hardly any code in the program text. More and more, the emphasis
shifts from “how to compile” to “what to compile”.

Grammars

The fundamental formalization for expressing the structure of programmes in a programming
language is grammars, or more especially context-free grammars. In theory, a language's
grammar primarily explains its syntactic structure, but because a language's semantics are
determined by its syntax, the grammar also plays a key role in determining the semantics.
Although there are other forms of grammar than context-free grammars, we shall focus mostly
on them. We will also encounter attribute grammars, which have been context-free grammars
that have been expanded with parameters and code, as well as frequent grammars, which are
more often referred to as "regular expressions" and are the consequence of stringent limitations
on context-free grammars. Only a small part of some of the other kinds of grammars are used in
compiler design. Context-free is often referred to as CF. A "grammar" is a guide for generating
the components of a collection of symbol strings. When it comes to programming languages, the

4 Basics in Compiler Design

symbolism serves as the language's tokens, the strings of symbols serve as the programme texts,
and the collection of symbol threads serves as the language itself. Following is the string:

[BEGIN print ("Hi!") END]

Contains 6 symbols (tokens) and might be a part of the string of symbols produced by the
grammar of a programming language, or, to use more common terminology, a programme in a
programming language. The fact that perhaps the strings are built in an organized way, and
meanings may be linked to this structure, renders this simplistic conception of a programming-
language worthless.

General Fundamental Information of Compiler

The compiler is software that changes a program written in a high-level language which again
is the source language to a low-level language (Object/Target/Machine Language/0’s, 1’s) as
displayed in Figure 1.

Figure 1: Illustrated the Block diagram of Compiler Design.

• A cross-compiler that performs on machine "A" and generates code for machine
"B". It can manufacture code for platforms other than the one on which a compiler
is an event in development.

• A source-to-source compiler, also widely recognized as a trans-compiler or
compatible with older, converts source code from one programming language into
the source code of another.

Language processing systems (using a Compiler)

Figure 2: Illustrated the Language Processing System.

5 Basics in Compiler Design

We know a computer is a logical assemblage of Software and Hardware. The hardware
recognizes a language that is hard for us to grasp, subsequently, we prefer to write programs in
a high-level language which is much less challenging for us to fathom and retain ideas. Now,
these applications go through a series of modifications so that they should conveniently be
utilized by machines. This is when language process products come in helpful.

An application that converts an input program written in one programming language into more
of an equivalent program written in another language is known as a translator or language
processor. A specific kind of translator called a compiler converts a program written in a high-
level software package into an equivalent program written in a low-level language like
machine code or assembly language.

A source program is a program written in assembly language, whereas an object (or target)
program is a program translated into a low-level language. Additionally, the compiler creates
an error report and tracks down the problems in the source code. No program created in a high-
level language may be run before compilation. Only the machine phonetic pronunciation of the
program is put into memory for execution after compilation as displayed in Figure 2. For every
computer program, we have a separate compiler; nonetheless, the core functions performed by
every programmer are the same.

• High-Level Language:

If a program includes #define or #include directives such as #include or #define it is termed
HLL. They are distant from machines but connected to people. Preprocessor directives are what
are used with these (#) tags and they advise from before on what to do.

• Pre-Processor:

The pre-processor destroys all #include directives via a method called file inclusion and disables
all #define directives with macro expansion. It carries out file acquisition, macro processing, and
file inclusion.

• Assembly Language:

It is neither high-level nor in binary numbers. It is an intermediate step that is a mix of native
machine code and some additional sensitive files required for execution.

• Assembler:

We will have an assembler for each environment (hardware + operating system). They are not
comprehensive as for each ecosystem we have one. The output of the assembler is dubbed an
object file and it transforms the sequence of instructions into machine code.

• Interpreter:

An interpreter turns high-level language into low-level machine language, exactly like a
compiler. Nonetheless, the method that they handle the information varies. The interpretation
does the same task line by line, but really the compiler receives the inputs, interprets them, and
then executes the program code all at once. A compiler examines the software application and
translates it for what it is into machine code while an interpreter transforms the program one
statement at a time. Programs that have been interpreted often run more gradually than those that
are created.

6 Basics in Compiler Design

• Reloadable Machine Code:

These can be loaded at any moment and can be launched. The program's address will be done
in such a manner that it will truly outstanding migration.

• Loader/Linker:

It attempts to execute the code after converting the reloadable code in and out of absolute code,
which either results in the program operating or in an error message or sometimes both can
happen.

To make a file operational, a linker must combine many object information into a single file.
After that, the loader puts it into memory and runs it.

Phases of a Compiler

The compilation is broken down into three major stages, each of which comprises several
components. They all communicate and use input from the conclusion of the timeframe as input.

Analysis Phase:

From the provided source code, an intermediate representation is produced:

1. Lexical Analyzer

2. Syntax Analyzer

3. Semantic Analyzer

4. Intermediate Code Generator

The program is broken up into "tokens" by the lexical analyzer, "sentences" are identified by the
syntax inspector as employing the language, and the semantic analyzer examines the static
interpretations of each construct. Creates "abstract" code using the Intermediate Code Generator.

Synthesis Phase:

The intermediary representation is used to construct an equivalent target program. It is divided
into two sections:

A. Code Optimizer

B. Code Generator

The final Software Generator converts abstract intermediate representation into precise machine
instructions once the Code Optimizer has optimized the abstract code.

Phases of Compiler

We generally have two stages of compilers, namely the Requirement analysis and Synthesis

phase.

The analysis step develops an intermediate code from the provided programming language as

shown in Figure 3. The synthesis step constructs an analogous activation in response to the

intermediate language.

7 Basics in Compiler Design

Figure 3: Illustrated the System of Phases of a Compiler.

Symbol Table:

It is a multidimensional array that the compiler uses and preserves up to date, and it contains all
of the identities of identifiers together with corresponding types. It makes the compiler extremely
efficient by rapidly discovering the identifiers.The study of an application code is broken down
primarily into the following three steps, which have been listed below:

i. Linear Analysis:

This involves full the character stream from left to right even during the scanning step. It is then
divided into the following tokens with a broader definition.

ii. Hierarchical Analysis

The tokens are categorized hierarchically into nested sections during this analysis step based on
conclusions that could be drawn.

iii. Semantic Analysis:

This stage is used to determine the significant difference between the source program's
components.The front endpoint and the back end are the requirements gathered that make up the
compiler. The lexical analyzer, semantic analyzer, syntax analyzer, and intermediate code
generating make up the frontend. The remaining are put together to construct the back end.

i. Lexical Analyzer:

Another name for it is a scanner. It accepts the preprocessor's output, which is in a pure high-
level vocabulary and handles files including macro expansion, as input. It extracts the
information from the c language and combines the characters into lexemes groups of character
that "go together". A token is assigned to each lexeme. The lexical analyzer can comprehend sql

8 Basics in Compiler Design

statements used to define tokens. It also suppresses lexical problems (e.g., erroneous
consonants), comments, and white space.

ii. Syntax Analyzer:

It is sometimes spoken to as a parser. The parse tree is grown. Context-Free Grammar is used to
generate the parse tree after taking each syllable one at a time.

Need of Grammar:

A few projects may adequately describe the laws of programming. The above works allow us to
portray the curriculum as it truly is. The input would have to be examined to see whether it
respects the appropriate methodology. The parse tree can sometimes be called the derivation tree.
Parse branches are often built to examine the languages provided for ambiguity. The derivation
tree is governed by a set of principles.

A. An expression is any identifier.

B. An expression may be any number.

C. Any operations carried out on the provided expression will always produce an
expression. An expression is, for instance, the result of adding two expressions.

D. A syntax tree may be created by compressing the parse tree.

Symbol Table in Compiler

The compiler focuses on establishing the Symbol Table, a big information structure used to
keep track of the interpretation of variables. It contains data on the scope and coupling of
names, and information categorized into different things, including variable and functional
names, classes, objects, etc.

i. Morphological and grammatical analysis steps are already built in.

ii. The information is obtained by the compiler's analysis stages, and it has been
utilised by the synthesis of different phases to produce code.

iii. The compiler makes advantage of it to maximize compile-time usefulness.

iv. The following steps of something like the compiler make use of it:

A. Lexical Analysis: Add new table elements to the table, such as new token entries.

B. Syntax Analysis: Add details to the table about featuretype, opportunity,
measurement, usage, etc.

C. Semantic Analysis: Uses the table data to determine semantics, i.e., to ensure that
equations and tasks are operationally sound type checking, and to appraise the
table as necessary.

D. Intermediate Code generation: Use the symbol table to add information about
temporary parameters and to find out how much but what kind of run-time is
granted.

E. Code Optimization: Uses data from the symbol table to improve based on the
machine.

F. Target Code generation:

included in the database to generate co

Character Table Entries

Each item in the symbol table contains characteristics connected to it that assist the
programmer at various stages.

i. Items Deposited in

A. Compiler generated temporaries

B. Strings and Literal Constants

C. Labels in source languages

D. Constants and Variable Names

E. Function Names and Procedure

ii. Information Used by

A. For parameters, whether parameter passing by value or by reference

B. Declaring procedures

C. Offset in storage

D. If structure or record then,

E. Name and Data Type

F. Number and type of arguments passed to function

G. Base Address

Operations of Symbol

The basic operations distinct on a character

Table 1: Illustrated the Different Operation

Implementation of Symbol

The corresponding data structures are commonly employed to construct symbol tables:

i. List:

Basics in Compiler Design

generation: Uses the name and address of the identifier which is
included in the database to generate code.

Entries

Each item in the symbol table contains characteristics connected to it that assist the

 Symbol-Table:

Compiler generated temporaries

Strings and Literal Constants

languages

Constants and Variable Names

Function Names and Procedure

by the Compiler from Symbol Table:

For parameters, whether parameter passing by value or by reference

Declaring procedures

If structure or record then, a pointer to structure table.

Name and Data Type

Number and type of arguments passed to function

Symbol Table:

The basic operations distinct on a character in Table 1 include:

: Illustrated the Different Operations and its Function.

Symbol Table:

The corresponding data structures are commonly employed to construct symbol tables:

9 Basics in Compiler Design

Uses the name and address of the identifier which is

Each item in the symbol table contains characteristics connected to it that assist the

For parameters, whether parameter passing by value or by reference

and its Function.

The corresponding data structures are commonly employed to construct symbol tables:

10 Basics in Compiler Design

A. The names and supporting data are stored in this technique using an array.

B. All saved records remain a reference that says "available," and new categories
are added throughout the order that they are received.

C. To search for a name, we begin only at top of the list and go down to the first
accessible pointer; if the moniker is not found, we get the exception "usage of
the undeclared name."

D. Before creating a brand-new name, be sure it does not already exist. Otherwise,
an error stating "Multiple predefined names" will appear.

E. Insertion is quick (O(1)), while searching is often sluggish (O(n) for big tables).

F. The fact that it requires little space is positive.

ii. Linked List:

A. In this construction, a linked list is used. Each document is included a link field.

B. Names are evaluated in the order suggested by the link in the link field.

C. The symbol table's initial element is referenced by the address "First," which is
always present.

D. Insertion is quick O(1), but searching is often sluggish O(n) for big tables.

iii. Hash-Table:

A. The most popular method for constructing symbol tables is to manage multiple
tables, a hash table and then a symbol table, as part of a scrambling scheme.

B. A search algorithm is an array with a 0 to table size-1 index range. These
records serve as references to that same symbol table's names.

C. We use a hash function to look up names, which returns an integer between 0
and table size1.

D. Lookup and updating may be done incredibly quickly (1).

E. The benefit is that rapid searching is feasible, and the drawback is that
scrambling is difficult to use.

iv. Binary Search Tree (BST):

A. Using a binary search tree to develop a symbol table means inserting two link fields,
left and right child.

B. All names are constructed as children of something like the root node, which adheres to
the data structure tree's attributes at all times.

C. Insertion and searches frequently take O(log2 n) time.

STATIC AND DYNAMIC

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed

Email Id

The area of a program where a variable's

variable, x. keeping variables segregated in various portions of the program is one of the

significant purposes of scoping. Since there aren't many short variable names and programmer

tend to adopt the same patterns when identifying variables for an array index

variables name will be used across different scopes in any program of reasonable size. Scopes

are often divided into two main categories:

A. Static Scoping

B. Dynamic Scoping

Static Scoping

A variable consistently refers to its top

as lexical scoping. This has nothing to do about the run

programmed text. Secondly, static scoping makes it considerably

code since a programmer can understand the scope just by reading the code. On the other hand,

dynamic scope necessitates that the programmer forecast every potential dynamic situation.

Variables are indeed statically

including C, C++, and Java. This means that the binding of a variable may be controlled by

program text, as shown in Figure 1

stack.

Figure 1: Ill

Basics in Compiler Design

CHAPTER 2

STATIC AND DYNAMIC SCOPING

Ghouse Basha M A

Department of Data Science & Analytics, School of Sciences,

(Deemed-to-be University), Bangalore-27, India

Email Id- ghouse.basha@jainuniversity.ac.in

The area of a program where a variable's designation is referenced by the usage of that

variable, x. keeping variables segregated in various portions of the program is one of the

significant purposes of scoping. Since there aren't many short variable names and programmer

rns when identifying variables for an array index

variables name will be used across different scopes in any program of reasonable size. Scopes

are often divided into two main categories:

variable consistently refers to its top-level context using static scoping, which is also known

as lexical scoping. This has nothing to do about the run-time call stack and is a feature of the

med text. Secondly, static scoping makes it considerably quicker to create modular

code since a programmer can understand the scope just by reading the code. On the other hand,

dynamic scope necessitates that the programmer forecast every potential dynamic situation.

ariables are indeed statically or lexically scoped in the majority of scripting languages,

including C, C++, and Java. This means that the binding of a variable may be controlled by

ogram text, as shown in Figure 1, and seems to be independent of the run-time procedure call

Figure 1: Illustrated that the Snippets for Static Scoping.

11 Basics in Compiler Design

Department of Data Science & Analytics, School of Sciences,

designation is referenced by the usage of that

variable, x. keeping variables segregated in various portions of the program is one of the

significant purposes of scoping. Since there aren't many short variable names and programmers

rns when identifying variables for an array index, the same

variables name will be used across different scopes in any program of reasonable size. Scopes

level context using static scoping, which is also known

time call stack and is a feature of the

quicker to create modular

code since a programmer can understand the scope just by reading the code. On the other hand,

dynamic scope necessitates that the programmer forecast every potential dynamic situation.

scoped in the majority of scripting languages,

including C, C++, and Java. This means that the binding of a variable may be controlled by

time procedure call

ustrated that the Snippets for Static Scoping.

Dynamic Scoping

Global identifiers are rare in contemporary languages and, to be used with dynamic scope,

refer to the identifier corresponding with the most recogni

this suggests that the most recent binding is checked for an identifier's existence

since each identifier has a permanent stack of bindings.

Figure 2

Static vs. Dynamic Scoping

Static scoping occurs predominantly in the majority of programming languages. This is
attributable to the reality that static scoping is simple to reason about something and
comprehend by just reading the code. Just by glancing at the text
which variables are inside the scope. Dynamic scoping is more preoccupied with how the code
runs than with how it is written. The stack is pushed with a broad portfolio each time a new
operation is called. Both dynamic and st
"local" specifies a global variable with a dynamic scope, the keyword "my" in Perl defines a
global variable with a static scope.

Basics in Compiler Design

Global identifiers are rare in contemporary languages and, to be used with dynamic scope,

refer to the identifier corresponding with the most recognized methods. Technically speaking,

this suggests that the most recent binding is checked for an identifier's existence

since each identifier has a permanent stack of bindings.

Figure 2: Illustrated the Snippets for Dynamic Scoping

Scoping

Static scoping occurs predominantly in the majority of programming languages. This is
attributable to the reality that static scoping is simple to reason about something and
comprehend by just reading the code. Just by glancing at the text in the editor, we can discover
which variables are inside the scope. Dynamic scoping is more preoccupied with how the code
runs than with how it is written. The stack is pushed with a broad portfolio each time a new
operation is called. Both dynamic and static scoping are supported in Perl. While the keyword
"local" specifies a global variable with a dynamic scope, the keyword "my" in Perl defines a
global variable with a static scope.

12 Basics in Compiler Design

Global identifiers are rare in contemporary languages and, to be used with dynamic scope,

methods. Technically speaking,

this suggests that the most recent binding is checked for an identifier's existence in Figure 2

Scoping.

Static scoping occurs predominantly in the majority of programming languages. This is
attributable to the reality that static scoping is simple to reason about something and

in the editor, we can discover
which variables are inside the scope. Dynamic scoping is more preoccupied with how the code
runs than with how it is written. The stack is pushed with a broad portfolio each time a new

atic scoping are supported in Perl. While the keyword
"local" specifies a global variable with a dynamic scope, the keyword "my" in Perl defines a

ERROR DETECTION AND

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed

During this stage of compilation, all potential user mistakes are
participants in the form of error messages. The "Error Handling procedure" entails finding
mistakes and informing viewers of them and the capabilities of either an error handler.

A. Detection

B. Reporting

C. Recovery

Classification of Errors

The blank columns in the symbol in Figure
to detect and notify the user of any errors inside this program. The parser can handle any
failures that come up while still analyzing the remainder of the input
is responsible for the overall management of checking for errors, accidents may still happen
during the requirements phase.

Figure

So, there are many types of errors and some of thes

Types of Sources of Error: There are three types of error: logic, run
error:

i. Logic Errors:

Basics in Compiler Design

CHAPTER 3

ERROR DETECTION AND RECOVERY IN COMPILER

Dr. Gokul Thanigaivasan

Department of Data Science & Analytics, School of Sciences,

(Deemed-to-be University), Bangalore-27, India

Email Id- t.gokul@jainuniversity.ac.in

During this stage of compilation, all potential user mistakes are found and sent to the
participants in the form of error messages. The "Error Handling procedure" entails finding
mistakes and informing viewers of them and the capabilities of either an error handler.

lumns in the symbol in Figure 1 are an error, and indeed the parser should be able
to detect and notify the user of any errors inside this program. The parser can handle any
failures that come up while still analyzing the remainder of the input. And although the parser
is responsible for the overall management of checking for errors, accidents may still happen

Figure 1: Illustrated the Different Types of Errors.

So, there are many types of errors and some of these are:

There are three types of error: logic, run-time and compile

13 Basics in Compiler Design

RECOVERY IN COMPILER

Department of Data Science & Analytics, School of Sciences,

found and sent to the
participants in the form of error messages. The "Error Handling procedure" entails finding
mistakes and informing viewers of them and the capabilities of either an error handler.

are an error, and indeed the parser should be able
to detect and notify the user of any errors inside this program. The parser can handle any

. And although the parser
is responsible for the overall management of checking for errors, accidents may still happen

: Illustrated the Different Types of Errors.

time and compile-time

Logic Errors arise when programs execute poorly and therefore do not terminate improperly (or
crash) (or crash). A logic mistake may
other behaviors, even if it is not immediately obvious.

ii. Run-time Error:

Run-time types of errors occur while a program is really being executed and are often induced by
an unfavourable operating condition or incorrect input data. The availability of proper memory to
operate an application or a resource conflict with another software consequent logical error is an
occurrence of this. Logic errors arise when processed code does not provide the desired ou
Logic faults are best managed by rigorous software debugging.

iii. Compile Time Errors

Compilation-time errors appear before the programed is run, at the time of compile. Syntax
mistake or missing file reference that stops the application from correctly compiling is an
example given in this Figure 2.

Figure

• Panic Mode Recovery:

This is the simplest method of errorrecovery and it stops the parser from forming infinite
permutations when recovering an
one of the predefined like the end,
or expression terminators discovered. When there aren't often repeated mistakes in a single
statement, this is sufficient. Example: Take the incorrect formula (1 + + 2) + 3. Panic
recovery: Go ahead and go on to the next integer. Bison: To specify how much input to skip, use
the special terminal error.

Basics in Compiler Design

Logic Errors arise when programs execute poorly and therefore do not terminate improperly (or
crash) (or crash). A logic mistake may generate significant or undesirable outputs and perhaps
other behaviors, even if it is not immediately obvious.

time types of errors occur while a program is really being executed and are often induced by
tion or incorrect input data. The availability of proper memory to

operate an application or a resource conflict with another software consequent logical error is an
occurrence of this. Logic errors arise when processed code does not provide the desired ou
Logic faults are best managed by rigorous software debugging.

Errors:

time errors appear before the programed is run, at the time of compile. Syntax
mistake or missing file reference that stops the application from correctly compiling is an

Figure 2: Illustrated the Compiling of the Errors.

Recovery:

This is the simplest method of errorrecovery and it stops the parser from forming infinite
an error. The parser discards the input emblem one at a time until

predefined like the end, semicolon set of synchronization tokens is often the statement
discovered. When there aren't often repeated mistakes in a single

statement, this is sufficient. Example: Take the incorrect formula (1 + + 2) + 3. Panic
: Go ahead and go on to the next integer. Bison: To specify how much input to skip, use

14 Basics in Compiler Design

Logic Errors arise when programs execute poorly and therefore do not terminate improperly (or
generate significant or undesirable outputs and perhaps

time types of errors occur while a program is really being executed and are often induced by
tion or incorrect input data. The availability of proper memory to

operate an application or a resource conflict with another software consequent logical error is an
occurrence of this. Logic errors arise when processed code does not provide the desired outcome.

time errors appear before the programed is run, at the time of compile. Syntax
mistake or missing file reference that stops the application from correctly compiling is an

the Errors.

This is the simplest method of errorrecovery and it stops the parser from forming infinite
error. The parser discards the input emblem one at a time until

often the statement
discovered. When there aren't often repeated mistakes in a single

statement, this is sufficient. Example: Take the incorrect formula (1 + + 2) + 3. Panic-mode
: Go ahead and go on to the next integer. Bison: To specify how much input to skip, use

15 Basics in Compiler Design

• Phase Level Recovery:

When an error is recognized, the parser conducts local adjustments on the remaining input. In the
ability to continue parsing the remainder of the statements after running through an error, a
parser overcomes the disadvantage of the remaining input. You may fix the errors by removing
superfluous punctuation marks, switching out commas for semicolons, or adding any that are
missing. Maximum caution can be used throughout the adjustment to avoid running an endless
loop. Any prefix that is recognized in the remaining input is replaced with a string each time.
The parser might even go on with its execution in this manner.

• Error Productions:

If the user is aware of widespread grammatical errors as well as blunders that result in erroneous
formulations, they may include the error manufacturing approach.

When this method would be used, parsing may proceed even when problems are produced.
Instead of writing 5*x, use 5x.

• Global correction:

The parser examines the whole programming and seeks the closest approximation that is error-
free to recover after incorrect input. The most accurate match was the one with the fewest token
insertions, deletions, and alterations. Due to its spatial and temporal complexity, this approach is
not viable.

FIRST and FOLLOW in Compiler Design

First

In the earlier essay on Orientation to Syntax Analysis, which is a fairly difficult technique to
conduct, we observed the need of going back. There could have been a simpler approach to
solving this issue and The compiler should make a good choice about which development rule
to use if it had an understanding of the "first character of the string issued when a production
rule is applied" in preparation and could equate it to the contemporary campaign or token in
the participation sequence it is to see as:

S ->cAd

A ->bc|a

And the input string is “cad”.

It would have unheeded the power generation rule A->bc (because 'b' is the leading
attractiveness of the string manufactured by this compression stage, not 'a'), and used the
construction rule A->a (because 'a' is the paramount attractiveness of the piece of rope
fashioned by this compression stage, and is the matching as the contemporary attractiveness of
the comparison purposes above if it had known because after construing atmosphere 'c' in the
involvement string and removing S->cAd, the next protagonist in the participation sequence.

Therefore, it is guaranteed that the compiler or parser can adequately apply the relevant
construction rule to generate the accurate arrangement tree for something like the specified
input string if it is aware of the first attractiveness of something like the filament that may be
retrieved by smearing a development rule.

16 Basics in Compiler Design

Follow

There is still a challenge for the parser and to grasp this issue, examine the grammar below.

A ->aBb

B -> c | ε

And understand the inputstring is “ab” to parse.As the first troposphere in the participation is a
parser smears the rule A->aBb.

A

/ | \

a B b

The parser now looks for the upper left of the participation string, which is b. Since B is the
Non-Terminal, no string issues to the attention from B may have b as the initial character.
However, the Grammar has included a construction rule B ->; if this is used, B will appear and
the parser will get the contribution "ab," as is seen beneath. However, the parser may only use
it if it is aware that the number that follows ‘B’ in the construction rule coincides with the
currently input characters.B follows Non-Terminal B in RHS of A ->aBb, i.e., FOLLOW (B) =
b, and the symbol being read from the input is also b. As a response, the parser follows these
rules. Additionally, it may capture the string "ab" from the inputted grammar.

A A

/ | \ / \

a B b => a b

 |

 ε

So, FOLLOW can style a Non-terminal disappear out if required to engender the filament from
the described tree. The implication is that in order therefore for parser to correctly perform the
required rule at the appropriate venue, we must identify FIRST and FOLLOW sets for a
learned in order.

17 Basics in Compiler Design

CHAPTER 4

CODE OPTIMIZATION IN COMPILER DESIGN

Dr. Santosh S Chowhan

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain(Deemed-to-be University), Bangalore-27, India

Email Id- santosh.sc@jainuniversity.ac.in

Code optimization, a programmer transformation method, is used in the synthesis phase to try to

optimise the intermediate representation by making it use fewer resources (such as CPU,

Memory), which should ultimately to faster-running machine code. The following goals should

have been achieved through the compiler optimization process:

A. The optimization would have to be accurate and cannot in some manner alter the

program's intent.

B. The software would run faster and perform better after adjustment.

C. Keep the step function reasonable.

D. The entire compilation step shouldn't be delayed by the optimization procedure.

Time to Optimize

Optimization of the code is often performed at the end of the development stage since it

reduces readability and adds code that is used to increase performance.

Need of Optimize

Optimizing an algorithm is beyond the scope of the code optimization phase. So the program is
optimized. And it may involve reducing the size of the code. So optimization helps to:

A. Reduce the space consumed and increases the speed of compilation.

B. Manually analyzing datasets involves a lot of time. Hence we make use of software like
Tableau for data analysis. Similarly manually performing the optimization is also
tedious and is better done using a code optimizer.

C. An optimized code often promotes re-usability.

Types of Code Optimization:

The optimization process can be broadly classified into two types:

i. Machine Independent Optimization:

To achieve a better target code, the intermediate code is improved during this code
optimization step. There are no CPU registers or definite memory addresses used in the portion
of the intermediate representation that is translated here.

ii. Machine Dependent Optimization:

Machine-dependent determination was carried out after the target code has been created and
changed to accommodate the architecture of the specified machine. It may use absolute

18 Basics in Compiler Design

therefore being rather than relative ones and incorporates CPU registers. Machine-dependent
compiler optimizations attempt to use the memory hierarchies to the fullest.Code Optimization
is done in the following different ways:

Compile Time Evaluation:

Compile-time function execution, also known as compile time objective function value or
generic constant expresses, is the capacity of a computer to carry out a function at convert time
then instead of compile it to machine code and operating it afterwards.

Variable Propagation:

One local code proposed methodology used in compiler design is the transmission. It may be
referred to as the process of changing a variable's uniform distribution in an expression. To put
that another way, if a value is given a known characteristic, we can just swap out the value for
the constant. When a variable is utilized, the constants associated with it may be replaced and
transferred across the flow diagram. Compilers do constant dissemination based on the
findings of reaching description analysis, which implies that if all elements have the same
constant assigned to them by their approaching definition, the variable has a uniform
distribution and may be exchanged with the consistent.

Constant Propagation:

The technique of replacing known constant values in expressions is known as constant
propagation. Constant propagation removes situations when values are easily assigned to another
variable by copying them from one place or variable to another.

Constant Folding:

Constant folding is very much an optimization method that gets rid of expressions that compute
constants that may be known in advance of something like the execution of the code. These
equations or expressions often only use model parameters or constant value referencing for the
variables.

Copy Propagation:

Dead code is often formed by copy propagation and might even be removed. By preventing the
execution of irrelevant statements during run time, lifeless code removal increases functional
recovery. Thus, in this article, a unique approach termed hash-based value enumeration is used to
integrate the two strategies.

Intermediate Code Generation in Compiler Design

According to the analysis-synthesis architecture of a compiler, the whole front end converts a
binary code into an independent intermediate representation, which is then used by the
compiler's leading edge to create the target code that somehow a machine can understand. The
use of machine-independent intermediate representation has significant capabilities:

A. Portability will be implemented due to the hardware intermediate code. For instance, if
a compiler just transfers the source language to the targeting machine language without
offering the opportunity of producing intermediate code, a complete native compiler
will be needed for every windows computer. Because the compiler itself undoubtedly
underwent some decisions that are consistent with the hardware specs.

B. Products will affect is made easier.

C. By optimizing the intermediate representation, source code enhancements that enhance
source code throughput are faster and more reliable.

Figure 1: Illustrated the Intermediate Code Generator in Compiler Design.

There will be n code generating and optimizers for every one of the n target machines if
machine program is written straight from source code, although there will only be one
compiler if the machine-independent form of technology is used
Language-specific intermediates code, such as byte
Independent (three-address code)

i. Postfix Notation:

Also known as suffix notation or reverse Polish notatio
expression inserts the operator at the right end as ab +. The conventional (infix) method of
expressing the sum of "a" and "b" is with an operator in the middle: a + b. In general, when "+"
is applied to the values represented by "e1" and "e2," postfix notation is produced by "e1e2 +,"
where "e1" and "e2" are any postfix expressions and "+" is any binary operator
notation does not need parentheses since there is only one possible method to decode a postfix
expression given the location and number of arguments for each operator. The operator
after the operand in postfix notation.

Example 1: The postfix representation of the expression (a + b) * c is: ab + c *

Example 2: The postfix representation of the expression (a
is: ab – cd + *ab -+

ii. Three-Address Code:

Basics in Compiler Design

Products will affect is made easier.

By optimizing the intermediate representation, source code enhancements that enhance
source code throughput are faster and more reliable.

: Illustrated the Intermediate Code Generator in Compiler Design.

There will be n code generating and optimizers for every one of the n target machines if
machine program is written straight from source code, although there will only be one

independent form of technology is used as shown in Fi
specific intermediates code, such as byte-code for Java, is however possible.

address code). Commonly used transitional code formats also provide:

Also known as suffix notation or reverse Polish notation. The postfix notation for the identical
expression inserts the operator at the right end as ab +. The conventional (infix) method of
expressing the sum of "a" and "b" is with an operator in the middle: a + b. In general, when "+"

represented by "e1" and "e2," postfix notation is produced by "e1e2 +,"
where "e1" and "e2" are any postfix expressions and "+" is any binary operator
notation does not need parentheses since there is only one possible method to decode a postfix
expression given the location and number of arguments for each operator. The operator
after the operand in postfix notation.

The postfix representation of the expression (a + b) * c is: ab + c *

The postfix representation of the expression (a – b) * (c + d) + (a
+

Code:

19 Basics in Compiler Design

By optimizing the intermediate representation, source code enhancements that enhance

: Illustrated the Intermediate Code Generator in Compiler Design.

There will be n code generating and optimizers for every one of the n target machines if the
machine program is written straight from source code, although there will only be one

as shown in Figure 1.
code for Java, is however possible.

. Commonly used transitional code formats also provide:

n. The postfix notation for the identical
expression inserts the operator at the right end as ab +. The conventional (infix) method of
expressing the sum of "a" and "b" is with an operator in the middle: a + b. In general, when "+"

represented by "e1" and "e2," postfix notation is produced by "e1e2 +,"
where "e1" and "e2" are any postfix expressions and "+" is any binary operator [4]. Postfix
notation does not need parentheses since there is only one possible method to decode a postfix
expression given the location and number of arguments for each operator. The operator comes

The postfix representation of the expression (a + b) * c is: ab + c *

b) * (c + d) + (a – b)

20 Basics in Compiler Design

A three-address statement uses no more than three references two for the multiplexer and one
for the result. A three-addressing code is a set of three address declarations. Three address
statements are of the form x = y op z, with addresses for x, y, and z memory locations. A
statement may sometimes include less than referring, but it is still referred to as a three-
addressed statement.

Example: The three address codes for the expression a + b * c + d: T 1 = b * c T 2
= a + T 1 T 3 = T 2 + d T 1, T 2, T 3 are temporary variables.

There are 3 ways to represent a Three-Address Code in compiler design:

• Quadruples

• Triples

• Indirect Triples
iii. Syntax Tree:

A reduced counterpart of a parse tree is what a syntax tree is. The vertices of the graph are
operators, while the connected components are operands, and the operator and keywords nodes
of the parse tree are transported to their parents, replacing a chain of singular productions with
a single link inside this syntax tree. Put parentheses around the expression to create a syntax
tree; this makes it clear which argument should arrive first.

Example: x = (a + b * c) / (a – b * c)

Object Code in Compiler Design

Assume you have a C program and therefore provide it to the compiler, which generates the

outcome in assembly code. The assembler will now receive the machine language code, and it

will generate some code designated as object code for you and steps and process are mentioned

in Figure 2.

Figure 2: Illustrated that the Object Code in Compiler Design.

However, you won't utilize both compiler and the assembler when you build an application.
Simply take the algorithm and provide it to the processor, and the compiler will output

21 Basics in Compiler Design

programming that is ready for immediate implementation. The loader, linker, and compiler are
all intertwined within the assembler. As a result, the compiler software itself preserved all the
modules together. Therefore, when you use compiler collection, you call the compiler, the
disassembly, the linker, and the loader within a week of finishing with the complex formation
and loader. Once you activate the compiler, your object code will be present on the hard drive.
This object code has many parts:

• Header:

The header will list the different aspects that are present in this executable program and then
link to those aspects. As a result, the header will describe where the text segment will begin,
along with a link to it, as well as where the data segment will begin and where the translation
information and symbol identification are located. Which is nothing more than an index;
imagine a textbook where the meta-description lists the page numbers on whereby every
subject is covered. Similar to all of this, the header will provide the palaces where another
piece of information is situated. So that it will be convenient to jump right into such segments
later onwards for other technologies.

• Text Segment:It is nothing but a set of instructions.

• Data Segment:

Whatever data you used will be in the data section. If you implemented a constraint, for
instance, it will likely have been included in the data segment.

• Relocation Information:

To define anything while writing a program, we often utilize symbolism. Presuming you have
guidelines 1, 2, 3, and 4, continue reading.

Figure 3: Embellishes that the Allocation Information.

22 Basics in Compiler Design

The code will now be compiled to object code and L4 will be transformed with Goto-4 if you
mention anywhere Goto-L4 even if you don't write Goto statement in the high-level language,
the compiler's program will write it. Now, Goto-4 for level L4 will function as anticipated as
long as the application loads from address zero as displayed in Figure 3. However, the
operating system will often take up the very first portion of the random access memory. Even
if it is not devoted to that same operating system, there may already be another process
functioning at address 0 in that case. Consequently, if the computer has to be put through into
main memory, it may be imported somewhere when you load it into memory. If the new base
address is 1000, all the addresses must be modified, which is referred to as reorganization in
Figure 4.

Figure 4: Illustrated the Reallocation Information.

The original address is known as the Reloadable address and the final address which we get
after loading the program into the main memory is known as the Absolute address.

Pointer Analysis

For long years, pointers have been a headache for compilers. The problem illustrates how
complex it is to understand pointers as things that connect to other data and their intricate
interconnections. Pointer analysis has always been a crucial component of compiler design since
the early 1970s, and several methods have been proposed for it everywhere in time. In this
article, we'll discuss a particular approach known as "pointer-analysis," which is presently
recognized as a respectable framework for developing pointer-analyzing systems but that's not
truly the optimal choice.

The difficulty of Pointer Analysis

Even though pointers are dynamic, relationship analysis is a difficult task. They would either
be direct or indirect, and they may be aliased pointers to the same variable. You must also be
knowledgeable so that your compiler can create effective code for it. Points are created from
those other pointers; for instance, if a variable "A" has one reference point and a second
variable "B" has two visual references, working on "A" may benefit from one of those frames
of reference, while working on "B" may not be at all relevant when coding an example. The
updated following model point is essential because it will notify the user of the type of
physical memory that apartment buildings the data that your source code is addressing, which
is essential if this data format changes in the future. For this reason, your compiler must be
ready to invent code for a pointer. Users cannot simply command the compiler to transform

interconnections into memory addresses because if they do, their applications will break
anytime their data types change and, correspondingly, whenever the values at any of those
places change. This is why being able to compose code in Python for co

Model for Pointers

In Java and C++, pointers and referencing are used. There are two different kinds of pointers in
C: weak and strong. The place that the sluggish pointer link
instance, if it has been erased from existence
memory addresses. There are two distinct types of references in both languages: expensive
references, also known as standards, and non
references. These two ideas vary dramatically because constant references lose their value
between calls whereas non-constant references do, but they both enable users can access the
same object across various functionalities or methods without recogniz
the consumer reference.

Flow Insensitivity

A pointer may point to every kind of object, according to the principle of flow insensitivity.
This characteristic, which is associated
pointers more broadly. Using the same kind of hierarchy to describe pointers and connections
is the most apparent use for this attribute. It may also be used for other things, such
encoding regular present in all cells or evaluating an expression in re
has an array with five components and wants to know whether there are much more than three
elements in it. A pointer may refer towards another pointer, according to the second
characteristic, which again is called pointer indirectio
pointers to construct recursive structure

Aliasing, the third attribute, means that two pointers may refer to much the same object. This
characteristic makes it possible to use pointers to describe sh
criterion, mutability, states that a connection may be modified. This property enables us to use
pointers to represent modifiable things like strings and arrays. The null pointer, which stands
for something like an invalid pointer,
cannot be referenced by all the other values and has no pointer. Empty lists, empty arrays, and
other objects without so much as an element or members may all be written using it.

The Formulation in

A logic computer program called Data Log may be used to represent and address issues in a
variety of fields. To examine reference operations in a program, use the Methodology for
Pointer Analysis in Datalog. When we adjust pointers or references,
which sections of the program
application areas P1 and P2, which are included in Figure 5

Figure 5: Illustrate the Formulation of

Basics in Compiler Design

interconnections into memory addresses because if they do, their applications will break
anytime their data types change and, correspondingly, whenever the values at any of those
places change. This is why being able to compose code in Python for connections is necessary.

In Java and C++, pointers and referencing are used. There are two different kinds of pointers in
C: weak and strong. The place that the sluggish pointer links to may no longer be an issue

een erased from existence. Strong pointers always correspond
There are two distinct types of references in both languages: expensive

references, also known as standards, and non-constant references, also recognized as ordina
references. These two ideas vary dramatically because constant references lose their value

constant references do, but they both enable users can access the
same object across various functionalities or methods without recognizing what kind of object

A pointer may point to every kind of object, according to the principle of flow insensitivity.
This characteristic, which is associated with reference equivalence, enables us to think about
pointers more broadly. Using the same kind of hierarchy to describe pointers and connections
is the most apparent use for this attribute. It may also be used for other things, such
encoding regular present in all cells or evaluating an expression in real-time, as when a user
has an array with five components and wants to know whether there are much more than three
elements in it. A pointer may refer towards another pointer, according to the second
characteristic, which again is called pointer indirection. This attribute makes it possible to use
pointers to construct recursive structures like trees.

Aliasing, the third attribute, means that two pointers may refer to much the same object. This
characteristic makes it possible to use pointers to describe shared memory. The fourth
criterion, mutability, states that a connection may be modified. This property enables us to use
pointers to represent modifiable things like strings and arrays. The null pointer, which stands
for something like an invalid pointer, has the fifth attribute. This is a unique identifier that
cannot be referenced by all the other values and has no pointer. Empty lists, empty arrays, and
other objects without so much as an element or members may all be written using it.

The Formulation in Data-log

A logic computer program called Data Log may be used to represent and address issues in a
variety of fields. To examine reference operations in a program, use the Methodology for
Pointer Analysis in Datalog. When we adjust pointers or references, it helped us to understand
which sections of the program need updating. As per the formula, if a user owns the two

which are included in Figure 5, then:

: Illustrate the Formulation of the Datalog.

23 Basics in Compiler Design

interconnections into memory addresses because if they do, their applications will break
anytime their data types change and, correspondingly, whenever the values at any of those

nnections is necessary.

In Java and C++, pointers and referencing are used. There are two different kinds of pointers in
s to may no longer be an issue for

. Strong pointers always correspond to legitimate
There are two distinct types of references in both languages: expensive

constant references, also recognized as ordinary
references. These two ideas vary dramatically because constant references lose their value

constant references do, but they both enable users can access the
ing what kind of object

A pointer may point to every kind of object, according to the principle of flow insensitivity.
reference equivalence, enables us to think about

pointers more broadly. Using the same kind of hierarchy to describe pointers and connections
is the most apparent use for this attribute. It may also be used for other things, such as

time, as when a user
has an array with five components and wants to know whether there are much more than three
elements in it. A pointer may refer towards another pointer, according to the second

n. This attribute makes it possible to use

Aliasing, the third attribute, means that two pointers may refer to much the same object. This
ared memory. The fourth

criterion, mutability, states that a connection may be modified. This property enables us to use
pointers to represent modifiable things like strings and arrays. The null pointer, which stands

has the fifth attribute. This is a unique identifier that
cannot be referenced by all the other values and has no pointer. Empty lists, empty arrays, and
other objects without so much as an element or members may all be written using it.

A logic computer program called Data Log may be used to represent and address issues in a
variety of fields. To examine reference operations in a program, use the Methodology for

it helped us to understand
per the formula, if a user owns the two

24 Basics in Compiler Design

The formula is useful to us because it allows us to reason about pointer manipulations in a way
that is not possible with ordinary predicate logic.

Consider the following Example

The program contains two references: ref1 and ref2. They are both initialized to null, which
means that neither reference has any value associated with them. We then modify ref1 so that it
points to an object of type T and initialize ref2 with another reference r. We want to know what
the consequences of these changes are. We can use pointer analysis formulas to find out. The
first formula tells us that if we make a transition from state A (null) ⇒ B(T), then there must
exist another transition from state B(T) => C. The second formula tells us that there is no way
for the program to reach state C unless it has already reached state B [5].

Using Type Information

The compiler can use this information to determine whether a pointer is safe to dereference,
and therefore whether it makes sense for it to be converted into an object reference (e.g.,
by calling malloc). It can also use type information to determine whether a pointer is valid as
an argument for “memcpy()” or “memcmp()”. In both cases, if there is no dereference able
object on the stack that matches what the user passed as a source parameter, then this means
that whatever value the user is copying from or comparing against ends up being copied into
memory somewhere else instead; there’s no point doing this operation at all.

Semantic Analysis in Compiler Design

The third stage of the compiler process comprises semantic analysis. Semantic analysis verifies
the grammatical accuracy of programming declarations and statements. It is a group of functions
that the parser invokes when required to carry out the grammar. To verify the correctness of the
provided code, a symbol table and the syntax forest from the previous step are both required.
Semantic analysis includes a designated person, which helps the compiler ensure that each
operator has the necessary operands.

Semantic Analyzer

To determine if the presented programming is semantically compliant with language definition,
it employs a grammatical tree and symbol table. It collects type information and transmits it
either in a symbol table or a semantic tree. The compiler will then utilize additional type
information to generate an intermediate representation.

Semantic Errors

Errors recognized by the semantic analyzer are as follows:

A. Type mismatch

B. Undeclared variables

C. Reserved identifier misuse

Attribute Grammar

The use of additional data (attributes) to one or more context-free punctuation and grammar non-
terminals in addition to giving context-sensitive knowledge is known as attribute grammar. Each
attribute's range of potential values is clearly stated, and examples include integer, float,
character, string, and expressions. A computer's idiomatic syntax and semantics may very well

25 Basics in Compiler Design

be specified with the aid of attribute grammar, which should be a tool for giving context-free
sentence construction semantics. When understood as a parse tree, attribute sentence
construction may convey values as well as information amongst tree nodes.

E → E + T {E-value = E-value + T-value}

The semantic rules that define how the grammatical should be understood are included in the
right portion of the context-free grammar. The non-terminal E and T's values are combined in
every case, and the result is transferred to the non-terminal E. When parsing values from the
respective domain, semantic properties may be applied to them and evaluated when requirements
are met. The characteristics may be roughly divided into two main groups: synthesized attributes
as well as inherited attributes, depending according to how they acquire their values.

Synthesized attributes

These attributes get values from the attribute values of their child nodes. To illustrate, assume the
following production:

S → ABC

A can get values from S, B and C. B can take values from S, A, and C. Likewise, C can take
values from S, A, and B.

Functions of Semantic Analysis

• Type Checking

Ensures that data types are used in a way consistent with their definition.

• Label checking

A program should contain labels and references.

• Flow Control Check

Keeps a check that control structures are used properly(example: no break statement outside a
loop).

Static and Dynamic Semantics

• Static Semantics:

It is named so because these are checked at compile time. The static semantics and meaning of
program during execution, are indirectly related.

• Dynamic Semantic Analysis:

It defines the meaning of different units of program like expressions and statements. These are
checked at runtime, unlike static semantics.

Run Time Environment

When an application is developed in source code, it is only a collection containing text (code,
statements, etc.), and it needs activities to be performed on the target computer to operate
effectively. Memory support is necessary for software to carry execute instructions. Procedure
names, constants, and other names found in a computer must be mapped at runtime to that same
correct memory address. A program that is functioning is referred to as downtime. The target
machine's application program, which might contain software components, data structures, etc.,
is in a state where it is available to the applications that are now operating on it. A package called
a runtime network of support is created mostly by the application program itself and makes it
easier for frameworks to communicate with development environments. A computer program,
manages physical memory and de-allocation.

Activations Tree

A service is a sequence of processes created from either a series of instructions. A procedure's
requirements are carried out in order. Whatever within a procedure's start and end special
characters are referred to as the procedure's body? The body of the process is composed of
several finite operations and a procedure identifier. A procedure's actuation is when it is carried
out. All the parameters needed to call a procedure
listed below may be found in create dynamic:

The stack, sometimes described as the control stack, stores the excitation record for each
function that is conducted. When one program calls another, t
the called process has been completed. The calling procedure's descriptive information is now
kept mostly on the stack. We assume that
within one operation passing to
its execution, management is returned to the caller.We will use the accompanying line of code as
an example to thoroughly grasp this idea:

. . .

printf (“enter your name here”);

scanf (“%s”, username);

show data (username);

printf (“press any key to continue”);

. . .

int show data (char *user)

{

printf ("Your name is %s", username);

return 0;

}

. . .

The activation tree for the pr

Figure 6

Basics in Compiler Design

A service is a sequence of processes created from either a series of instructions. A procedure's
requirements are carried out in order. Whatever within a procedure's start and end special

referred to as the procedure's body? The body of the process is composed of
finite operations and a procedure identifier. A procedure's actuation is when it is carried

out. All the parameters needed to call a procedure are included in an activation record. The units
ay be found in create dynamic: depending on the source language used

The stack, sometimes described as the control stack, stores the excitation record for each
function that is conducted. When one program calls another, the caller's execution is halted until

completed. The calling procedure's descriptive information is now
stack. We assume that the control signal flows sequentially, with control

 another as it is invoked. When a triggered procedure completes
its execution, management is returned to the caller.We will use the accompanying line of code as
an example to thoroughly grasp this idea:

printf (“enter your name here”);

username);

show data (username);

printf (“press any key to continue”);

int show data (char *user)

printf ("Your name is %s", username);

The activation tree for the provided code is shown in Figure 6

Figure 6: Illustrated the Activation tree.

26 Basics in Compiler Design

A service is a sequence of processes created from either a series of instructions. A procedure's
requirements are carried out in order. Whatever within a procedure's start and end special

referred to as the procedure's body? The body of the process is composed of
finite operations and a procedure identifier. A procedure's actuation is when it is carried

n record. The units
g on the source language used.

The stack, sometimes described as the control stack, stores the excitation record for each
he caller's execution is halted until

completed. The calling procedure's descriptive information is now
control signal flows sequentially, with control

another as it is invoked. When a triggered procedure completes
its execution, management is returned to the caller.We will use the accompanying line of code as

ided code is shown in Figure 6 below.

27 Basics in Compiler Design

Because procedures are now understood to be run depth-first, stack allocation is the most ideal
kind of storage for technique activations.

Allocation of Storage

The following entities' runtime resource needs are managed by that the runtime environment:

A. Code: The text portion of software that is constant throughout the performance. Its
memory needs are recognized at the time of compilation.

B. Procedures: Although each text portion is static, they are sporadically called. Stack
storage is thus used to control protocol calls and activations.

C. Variables: Only if they are global or constant, variables are only accessible during
runtime. The management of data storage and de-allocation for elements during runtime
is handled by a heap dynamic memory technique.

Fixed Allocation

The compilation material in this allocation strategy is allocated to a place in memory and is not
unaffected by how the program is run. Runtime implementation for ram and de-allocation is not
necessary since such amount of memory needed and where it can be stored are announced in
advance.

Allocation of Stack

Stack memory allocation is also used to control procedure arguments and their activations. It
proceeds using the last-in, first-out (LIFO) methodology, and recursive function calls benefit
enormously from this routing algorithm.

Allocating Heaps

Only during runtime seem to be variables that are local to an operation assigned and released.
Memory is performed automatically to variables via heap allocation, which then claims your
memory back when the objects are no longer needed. Both stacks as well as heap memory may
expand and diminish dynamically and unpredictably, except maybe areas of memory that are
statically allocated. As a result, they cannot be given a set volume of RAM inside the system.
The text portion of the rules is allotted a set amount of capacity, as seen in the image above. At
the two ends of something like the program's entire memory allotment, stack and heap resources
are placed. The opposite of both contraction and proliferation.

Different Parts of Compiler

Compilers are sophisticated software because of this, they are quite often divided into several
levels that require specific known as passes that interact with one another through temporary
files. But again the passes themselves are only one step in the compilation process. Addition than
composition, there may be other phases associated with the process of generating an executable
code from a source-code file. In truth, certain operating platforms can wait until a program is
loaded at run-time before really constructing an executable image. Driver applications like
UNIX's cc or Microsoft C's cl, which conceal a sizable percentage of the compilation process
from you, substantially complicate the matter.

These driver programmers serve as executives, managing these same numerous compiler
component programmers sufficiently that you are unaware that they even exist and are utilized.

For the sake of this book, I'll refer to a "Compiler" as a computer or group of programs that
convert one language's source code into perhaps another language, in this instance assembly
language. The compiler does not include syntax, linker
Figure 7, depicts the structure of the typical four
Preprocessors often carry out different housekeeping duties that you prefer not to bother the
actual compiler with, such as macro replacement, comment cleanup from source code, and
various sanitation jobs.

Figure 7: Represented the Structure of a Typical Four

The second pass is where the compiler's heart is. It converts source code into an input
representation that is similar to assembly language using a morphological analyzer, grammar,
and code generator. The optimizer, which is employed in the third pass, enhances the quality of
the created intermediate code. The back end, which is used in the daily atte
optimized code into an actual programming language or some other kind of binary, programming
language. Of course, this structure is amenable to several changes. Many compilers lack
preprocessors; several create assembly language in the se
assembly language; still, others automatically generate binary instructions without first
processing through an ASCII input representation like

Basics in Compiler Design

For the sake of this book, I'll refer to a "Compiler" as a computer or group of programs that
convert one language's source code into perhaps another language, in this instance assembly
language. The compiler does not include syntax, linker, and other tools.The graphic below

depicts the structure of the typical four-pass compiler. The first pass is preprocessing.
Preprocessors often carry out different housekeeping duties that you prefer not to bother the

as macro replacement, comment cleanup from source code, and

: Represented the Structure of a Typical Four-Pass Compiler.

The second pass is where the compiler's heart is. It converts source code into an input
ation that is similar to assembly language using a morphological analyzer, grammar,

and code generator. The optimizer, which is employed in the third pass, enhances the quality of
the created intermediate code. The back end, which is used in the daily attempt, converts the

actual programming language or some other kind of binary, programming
language. Of course, this structure is amenable to several changes. Many compilers lack
preprocessors; several create assembly language in the second pass; yet others directly improve

others automatically generate binary instructions without first
processing through an ASCII input representation like an assembler.

28 Basics in Compiler Design

For the sake of this book, I'll refer to a "Compiler" as a computer or group of programs that
convert one language's source code into perhaps another language, in this instance assembly

, and other tools.The graphic below
pass compiler. The first pass is preprocessing.

Preprocessors often carry out different housekeeping duties that you prefer not to bother the
as macro replacement, comment cleanup from source code, and

Pass Compiler.

The second pass is where the compiler's heart is. It converts source code into an input
ation that is similar to assembly language using a morphological analyzer, grammar,

and code generator. The optimizer, which is employed in the third pass, enhances the quality of
mpt, converts the

actual programming language or some other kind of binary, programming
language. Of course, this structure is amenable to several changes. Many compilers lack

cond pass; yet others directly improve
others automatically generate binary instructions without first

29 Basics in Compiler Design

CHAPTER 5

THE LEXICAL ANALYZER

Dr. Thirukumaran Subbiramani

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- s.thirukumaran@jainuniversity.ac.in

The discrete job used in the synthesis process is referred to as a step. Typically, a pass is
composed of several steps. The input is transformed into a form that is more useful to the rest of
the compiler during the lexical analysis software phase also known as the scanner or tokenizer of
the compiler. The lexical analyzer views the alpha channel as a collection of fundamental
linguistic building blocks known as tokens. In other words, a token is a single lexical unit.
Tokens in C include the words for while or for, >, >=, >>, and >>=, names and numbers, and so
on. A lexicon is the base language that makes up a token. Note that the link between vernacular
and token is not exact. While a while token necessarily corresponds to a single syllable, a name
or number token, for example, may correspond to several different words.

Interwoven tokens (such as the previously used >, >=, >>, and >>=) exacerbate the problem. A
lexical analyzer often locates the token that matches the longest syllable; many languages
incorporate this behaviour within their language specifications. Instead of more than two tokens,
a shift token is recognized after the input >> . Tokens are generated from lexemes by the lexical
analyzer. Internally, tokens are often handled as distinct integers or as an enumeration type. In
this example to distinguish between multiple names and number tokens, a lexicon is required in
addition to the token.

The selection of a token set is one of the initial planning choices that can have an impact on the
organization of the overall compiler. For example, the symbols >, >=, >>, and >>= can be
handled either as four tokens or as a single comparison-operator token; Lexemes are used to
separate tokens. As an alternative, you may aggregate many symbols into a single token or use a
separate token for every read or write operation. The first approach may occasionally be
employed to make code creation more understandable. However, if there are too many tokens,
the parser will become bigger than anticipated and be more possible to establish.

No one can definitively say which is superior, but after reading through this book, you'll be
aware of the design elements and be able to come to effective judgments. In general, arithmetic
operators with the same precedence and corresponding characteristic as type-declaration
keywords like intand char may also be combined. The lexical analyzer often functions
independently of the remainder of the compiler and requires only a few subroutines, generally
one or two, along with global variables. The lexical analyzer is called each time the parser needs
a new token, and it returns both token and the lexeme that correlates with it. Because the actual
input method is masked from the parser, changing or replacing the lexical analyzer won't have a
consequence on the remainder of the compiler.

The Parser

High-level languages like C are translated into low
compilers. He translates across languages b
of inspiration for most of the subject's theoretical component
parsing. When an English sentence is broken down into its constituent parts for grammatical
study, it has been parsed. For example, contemplate the phrase

Jane watches spot run and has Jane as the subject and spot as the consequent ("sees spot run").
The predicate in tum is mainly composed of the verb "sees," the direct object "spots," and the
semicolon that modifies the direct object ("run"). See how a comm
you learnt to construct in sixth grade, illustrates a statement in the example below. A compiler
executes the same process of disassembling a phrase into its parts during the parser step, albeit it
often presents the interpreted text as a tree rather than a language diagram.

Figure 1: Represented that the Parching Phase.

Given that the sentence diagram itself highlights the syntactic connections between the phrase's
individual components, this kind of graph is suitably referr
takes the form of a tree, a syntax tree). The syntax tree may be expanded to show morphological
and syntactic structures, however. A parse tree is the name of something like the second
structure. The parse tree for our
Because a tree structure is easier to represent in a computer program, it is used in this case rather
than a language diagram.

Despite it having the same meaning as in English, "phrase" is a te
several tokens that adhere to a specified grammatical framework. In the context of a compiler,
the phrase often refers to a whole computer program
languages like Pascal, which imitates both
Pascal program is indicated by a time frame, exactly as it is in English. A semicolon is used as a
punctuation mark to designate two full concepts, much too how an English semicolon separates
two distinct sentences.

In summary, a parser, which is a group of subroutines, generates a parse tree to reflect the results
by making the phrase being parsed. In other words, the parse tree represents the sentence
hierarchically, beginning at the tree's root with
phrase and moving down to the leaflets, which includ
some compilers construct a physical parse tree made up of structures, pointers, and other aspects,
the majority of compilers model the parse tree. Other parsing methods only keep track of their
position in the tree; we'll see how this happens in a minute. They don't generate a physical tree.
The parse tree itself, however, is a very helpful construct for comprehending
process works.

Basics in Compiler Design

level languages like C are translated into low-level languages like 8086 assembl
compilers. He translates across languages b because of this, linguistics serves as a primary source

ubject's theoretical components. An example of such a concept is
parsing. When an English sentence is broken down into its constituent parts for grammatical
study, it has been parsed. For example, contemplate the phrase as display in Figure

has Jane as the subject and spot as the consequent ("sees spot run").
The predicate in tum is mainly composed of the verb "sees," the direct object "spots," and the
semicolon that modifies the direct object ("run"). See how a common sentence diagram, the sort
you learnt to construct in sixth grade, illustrates a statement in the example below. A compiler
executes the same process of disassembling a phrase into its parts during the parser step, albeit it

ed text as a tree rather than a language diagram.

1: Represented that the Parching Phase.

Given that the sentence diagram itself highlights the syntactic connections between the phrase's
individual components, this kind of graph is suitably referred to as a syntax diagram (or, if it
takes the form of a tree, a syntax tree). The syntax tree may be expanded to show morphological
and syntactic structures, however. A parse tree is the name of something like the second
structure. The parse tree for our earlier sentence diagram is illustrated in the F
Because a tree structure is easier to represent in a computer program, it is used in this case rather

Despite it having the same meaning as in English, "phrase" is a technical word. It is made up of
several tokens that adhere to a specified grammatical framework. In the context of a compiler,

rs to a whole computer program. The resemblance is noticeable in a
languages like Pascal, which imitates both English syntax and punctuation. The

is indicated by a time frame, exactly as it is in English. A semicolon is used as a
punctuation mark to designate two full concepts, much too how an English semicolon separates

In summary, a parser, which is a group of subroutines, generates a parse tree to reflect the results
by making the phrase being parsed. In other words, the parse tree represents the sentence

, beginning at the tree's root with both the fundamental information about just the
phrase and moving down to the leaflets, which include the sentence's actual tokens.
some compilers construct a physical parse tree made up of structures, pointers, and other aspects,

compilers model the parse tree. Other parsing methods only keep track of their
position in the tree; we'll see how this happens in a minute. They don't generate a physical tree.
The parse tree itself, however, is a very helpful construct for comprehending how the interpreting

30 Basics in Compiler Design

level languages like 8086 assemblies via
ecause of this, linguistics serves as a primary source

. An example of such a concept is
parsing. When an English sentence is broken down into its constituent parts for grammatical

as display in Figure 1:

has Jane as the subject and spot as the consequent ("sees spot run").
The predicate in tum is mainly composed of the verb "sees," the direct object "spots," and the

on sentence diagram, the sort
you learnt to construct in sixth grade, illustrates a statement in the example below. A compiler
executes the same process of disassembling a phrase into its parts during the parser step, albeit it

Given that the sentence diagram itself highlights the syntactic connections between the phrase's
ed to as a syntax diagram (or, if it

takes the form of a tree, a syntax tree). The syntax tree may be expanded to show morphological
and syntactic structures, however. A parse tree is the name of something like the second

ated in the Figure 2 below.
Because a tree structure is easier to represent in a computer program, it is used in this case rather

chnical word. It is made up of
several tokens that adhere to a specified grammatical framework. In the context of a compiler,

. The resemblance is noticeable in a
English syntax and punctuation. The conclusion of a

is indicated by a time frame, exactly as it is in English. A semicolon is used as a
punctuation mark to designate two full concepts, much too how an English semicolon separates

In summary, a parser, which is a group of subroutines, generates a parse tree to reflect the results
by making the phrase being parsed. In other words, the parse tree represents the sentence

both the fundamental information about just the
e the sentence's actual tokens. Although

some compilers construct a physical parse tree made up of structures, pointers, and other aspects,
compilers model the parse tree. Other parsing methods only keep track of their

position in the tree; we'll see how this happens in a minute. They don't generate a physical tree.
how the interpreting

Figure 2: Represented that the Physical Tree.

The Code Generator

The last part of the compiler itself is the code generator. It is erroneous to isolate this step from
the processor itself since most compilers generate
the generated code is produced by the same procedures and functions that process the input
stream. But in some compilers, the parser creates a parse tree for the whole input file, which is
ultimately walked by a different code generator. The creation of an interpreted language of the
input by the parser, from which an optimizations pass may rebuild the syntax tree, is a third
possibility. In contrast to a linear program code, a syntax tree makes certain optimiza
The optimizer may navigate the revised syntax tree one more time to produce the code. Although
compilers may directly create object code, they often delegate code
program. Instead of developing machine code directly, the
representation that is translated into true machine language via a compiler's back end.

An intermediate language designed to carry out certain tasks, such
compared to a super assembly code. Interm
each with a unique purpose. An approach to compiler construction using transition languages has
advantages and disadvantages. The main flaw is the slowness. A parser that goes straight from
syllables to binary object code will be very quick since processing intermediate code requires an
additional step, which may enable the compilation time to rise by two times. However, the
rewards often exceed the disadvantages in the sense of speed. They may be summed
flexibility and adaptability.

Some parser improvements are possible, including direct continuous folding, which evaluates
consistent expressions at the
optimizations, however, are challenging
the parsers provide optimizing compilers
optimise in a subsequent run. You can speak whatever intermediate language you like. A single
lexicalanalyzer or parser front end may be used to produce code for several different machines
by providing distinct back ends that translate a commonly used measure language into machine
specific assembly language. On the other hand, after parsing numerous high
may design a variety of front

Basics in Compiler Design

2: Represented that the Physical Tree.

The Code Generator

The last part of the compiler itself is the code generator. It is erroneous to isolate this step from
the processor itself since most compilers generate code as the parse progresses. In other words,
the generated code is produced by the same procedures and functions that process the input
stream. But in some compilers, the parser creates a parse tree for the whole input file, which is

a different code generator. The creation of an interpreted language of the
input by the parser, from which an optimizations pass may rebuild the syntax tree, is a third
possibility. In contrast to a linear program code, a syntax tree makes certain optimiza
The optimizer may navigate the revised syntax tree one more time to produce the code. Although
compilers may directly create object code, they often delegate code production to another

. Instead of developing machine code directly, they make a program in an intermediate
representation that is translated into true machine language via a compiler's back end.

An intermediate language designed to carry out certain tasks, such as optimization, may be
compared to a super assembly code. Intermediate languages come in a wide range of variations,
each with a unique purpose. An approach to compiler construction using transition languages has
advantages and disadvantages. The main flaw is the slowness. A parser that goes straight from

binary object code will be very quick since processing intermediate code requires an
additional step, which may enable the compilation time to rise by two times. However, the
rewards often exceed the disadvantages in the sense of speed. They may be summed

Some parser improvements are possible, including direct continuous folding, which evaluates
the build phase rather than at the run time. The majority of

optimizations, however, are challenging for a parser to do, if not impossible. As a consequence,
the parsers provide optimizing compilers with an intermediates language that is simple to
optimise in a subsequent run. You can speak whatever intermediate language you like. A single

or parser front end may be used to produce code for several different machines
by providing distinct back ends that translate a commonly used measure language into machine
specific assembly language. On the other hand, after parsing numerous high-level la
may design a variety of front that comes to an end that all generate the same intermediate

31 Basics in Compiler Design

The last part of the compiler itself is the code generator. It is erroneous to isolate this step from
code as the parse progresses. In other words,

the generated code is produced by the same procedures and functions that process the input
stream. But in some compilers, the parser creates a parse tree for the whole input file, which is

a different code generator. The creation of an interpreted language of the
input by the parser, from which an optimizations pass may rebuild the syntax tree, is a third
possibility. In contrast to a linear program code, a syntax tree makes certain optimizations easier.
The optimizer may navigate the revised syntax tree one more time to produce the code. Although

production to another
y make a program in an intermediate

representation that is translated into true machine language via a compiler's back end.

optimization, may be
ediate languages come in a wide range of variations,

each with a unique purpose. An approach to compiler construction using transition languages has
advantages and disadvantages. The main flaw is the slowness. A parser that goes straight from

binary object code will be very quick since processing intermediate code requires an
additional step, which may enable the compilation time to rise by two times. However, the
rewards often exceed the disadvantages in the sense of speed. They may be summed up as

Some parser improvements are possible, including direct continuous folding, which evaluates
run time. The majority of

for a parser to do, if not impossible. As a consequence,
an intermediates language that is simple to

optimise in a subsequent run. You can speak whatever intermediate language you like. A single
or parser front end may be used to produce code for several different machines

by providing distinct back ends that translate a commonly used measure language into machine-
level languages, you

comes to an end that all generate the same intermediate

32 Basics in Compiler Design

language. Compilers for several languages may utilize a single optimizer as well as a back end
when using this technique.

Another place where intermediate languages are in incremental compilers or interpreters. These
program execute intermediate code directly without first converting it to binary, which decreases
the time required to develop and link a real program. An interpreter may provide you with a
better debugging environment since it can check for problems like out-of-bounds column
indexing at run time. The output code produced by the compiler created in Chapter Six is written
in an intermediate language. Although the language itself is treated in full in that chapter, I
believe it requires a basic summary here since I'll be utilizing it indiscriminately for
programming constructs for the remainder of this book. The majority of the directions on a
typical computer often one or two are immediately translated into a limited percentage of
assembly-language instructions in an intermediate language, which is only a subset of the C
language. Examples include the following:

x=a+b*c+d is translated into something like this:

t0= _a;

tl=_b;

tl *= _c;

t0 += tl;

 t0 +=_d;

The compiler allows the temporary variables "t0" and "t1" in the code above to hold the outcome
of an expression that has only been partly evaluated. They are referred to as anonymous
temporaries and are often referred to as just temporaries. The compiler adds an underscore to the
name of a declared variable to distinguish it from variables produced by the compiler, such as 't0'
and 'tl,' whose names do not. Because it's so close to C, I'm going to employ intermediate
language for the time being without a conventional English meaning. Remember that the
intermediate language is essentially a programming language with syntax similar to C, thus it
would be of little benefit to convert outstanding C into poor C.

Representing Computer Languages

A compiler is like every other program in that some sort of design abstraction is useful when
constructing the code. Flow charts, Warnier-Orr diagrams, and structure charts are examples of
design abstraction. In compiler applications, the best abstraction is one that describes the
language being compiled in a way that reflects the internal structure of the compiler itself.

Grammars and Parse Trees

Linguistics is also used to denote the most popular approach to formally documenting a

programming language. This approach, known as formal grammar, was developed by M.I.T. K.

and was created by Noam Chomsky and used by J.W. Backus as the first Fortran compiler for

analyzing computer programs. The most common way to express formal grammar is in a

modified Backus Naur form or BNF for short. Starting from a collection of tokens called

terminal symbols and a set of definitions called non-terminal symbols, a rigorous BNF

representation is constructed. Definitions provide a framework that allows the representation of

any legal construct in the language. The:: = operator, which can be interpreted as "is defined as"

33 Basics in Compiler Design

or "goes to", is the only supported operator. For an English sentence, the following BNF rule can

serve as an introduction to grammar: The following: = subject predicate A subject and a

predicate are components of a sentence. The phrase "a sentence follows a subject followed by a

predicate" is another option. Each such rule is called a production. The left side of the output is

represented by non-terminals to the left of ::= , and the right side by everything to the right of ::=

The grammars used in this book always have a single, non-terminal symbol on the left-hand side

of the production, and every non-terminal used on the right-hand side must likewise be used on

the left-hand side. All symbols, including tokens in the input language that are not present on the

left, are known as terminal symbols. Once each terminal symbol is defined, an actual grammar

moves on to the next one. For example, the grammar might continue:

Subject=noun

Noun=JANE

Where JANE is a terminal symbol a token that matches the string "Jane" in the input. The strict
BNF is usually modified to make a grammar easier to type, and I'll use a modified BNF in this
book. The first modification is the addition of an OR operator, represented by a vertical bar (1).
For example,

noun ::= JANE

noun ::= DICK

noun ::= SPOT

is represented as follows:

noun ::=DICK | JANE

I use the ~ in most of this book. I also consistently use italics for nonterminal symbols and
boldface for terminals symbols such as + and * are also always terminals-they'll also be in
boldface but sometimes it's hard to tell. There's one other important concept. Grammars must be
as flexible as possible, and one of the ways to get that flexibility is to make the application of
certain rules optional.

A rule like this:

noun ::= DICK | JANE | SPOT

Similarly, a ���� is often substituted for the::= as in:

noun ���� DICK | JANE

I use the � in most of this book. I also consistently use italics for nonterminal symbols and
boldface for terminals (symbols such as + and * are also always terminals-they'll also be in
boldface but sometimes it's hard to tell). There's one other important concept. Grammars must be
as flexible as possible, and one of the ways to get that flexibility is to make the application of
certain rules optional. A rule like this:

article���� THE

Says that THE is an article, and you can use that production like this:

object ���� article noun

In English, an object is an article followed by a noun. A rule like the foregoing requires that all
nouns that comprise an object be preceded by a participle. But what if you want the article to be
optional? You can do this by saying that an article can ei
string. The following is used to do this:

article ���� THE | �

The ɛ (pronounced "epsilon") represents an empty string. If the THE token is present in the
input, then the

Article ���� The

Production is used if it is not there

Article ���� �

So, the parser determines which of the two productions to apply by examining the next input
symbol.A grammar that recognizes a limited set of English sentences is shown below:An input
sentence can be recognized using this grammar, with a series of replacements, as follows:

i. Start with the topmost symbol in the grammar, the goal symbol.

ii. Replace that symbol with one of its right

iii. Continue replacing nonterminal
right-hand side, until there are n

For example, the grammar can be used to recognize "Jane sees Spot run" as follows:

These replacements can be used to build the parse tree. For example, re
subject-predicate is represented in tree form like this:

Basics in Compiler Design

In English, an object is an article followed by a noun. A rule like the foregoing requires that all
nouns that comprise an object be preceded by a participle. But what if you want the article to be
optional? You can do this by saying that an article can either be the noun "the" or an empty
string. The following is used to do this:

(pronounced "epsilon") represents an empty string. If the THE token is present in the

f it is not there, however, then the article matches an empty string, and

So, the parser determines which of the two productions to apply by examining the next input
symbol.A grammar that recognizes a limited set of English sentences is shown below:An input

ntence can be recognized using this grammar, with a series of replacements, as follows:

Start with the topmost symbol in the grammar, the goal symbol.

Replace that symbol with one of its right-hand sides.

nonterminals, always replacing the leftmost nonterminal with its
hand side, until there are no more nonterminals to replace.

For example, the grammar can be used to recognize "Jane sees Spot run" as follows:

These replacements can be used to build the parse tree. For example, replacing
predicate is represented in tree form like this:

34 Basics in Compiler Design

In English, an object is an article followed by a noun. A rule like the foregoing requires that all
nouns that comprise an object be preceded by a participle. But what if you want the article to be

ther be the noun "the" or an empty

(pronounced "epsilon") represents an empty string. If the THE token is present in the

, however, then the article matches an empty string, and

So, the parser determines which of the two productions to apply by examining the next input
symbol.A grammar that recognizes a limited set of English sentences is shown below:An input

ntence can be recognized using this grammar, with a series of replacements, as follows:

the leftmost nonterminal with its

For example, the grammar can be used to recognize "Jane sees Spot run" as follows:

placing a sentence with

35 Basics in Compiler Design

The evolution of the entire parse tree is pictured in the above figure. A glance at the parse tree
tells you where the terms terminal and nonterminal come from. Terminal symbols are always
leaves in the tree they're at the end of a branch, and nonterminal symbols are always interior
nodes.

An Expression Grammar

A grammar that recognizes a list of one or more statements, each of which is an arithmetic
expression followed by a semicolon. Statements are made up of a series of semicolon-delimited
expressions, each comprising a series of numbers separated either by asterisks for multiplication
or plus signs for addition.

Note that the grammar is recursive. For example, Production 2 has statements on Recursion in
grammar. both the left- and right-hand sides. There's also third-order recursion in Production 8
since it contains an expression, but the only way to get to it is through Production 3, which has
an expression on its left-hand side. This last recursion is made clear if you make a few algebraic
substitutions in the grammar. You can substitute the right-hand side of Production 6 in place of
the reference to the term in Production 4, yielding

Expression �factor

and then substitute the right-hand side of Production 8 in place of the factor:

expression � (expression)

Since the grammar itself is recursive, it stands to reason that recursion can also be used to parse
the grammar-1'11 to show how in a moment. The recursion is also important from a structural
perspective-it is the recursion that makes it possible for a finite grammar to recognize an infinite
number of sentences. The strength of the foregoing grammar is that it is intuitive-its structure
directly reflects the way that an expression goes together. It has a major problem, however. The
leftmost symbol on the right-hand side of several of the productions is the same symbol that
appears on the left-hand side. In Production 3, for example, expression appears both on the left-
hand side and at the far left of the right-hand side.

The property is called left recursion, and certain parsers such as the recursive-descent parser that
I'll discuss in a moment can't handle left-recursive productions. They just loop forever,
repetitively replacing the leftmost symbol on the right-hand side with the entire right-hand side.
You can understand the problem by considering how the parser decides to apply a particular
product when it is replacing a nonterminal that has more than one right-handsideas represented in
Table 1. The simple case is evident in Productions 7 and 8. The parser can choose which
production to apply when it's expanding factor by looking at the next input symbol. If this
symbol is a number, then the compiler applies Production 7 and replaces the factor with a
number. If the next input symbol was an open parenthesis, the parser would use Production 8.
The choice between Productions 5 and 6 cannot be solved in this way, however. In the case of
Production 6, the right-hand side of the term starts with a factor which, in tum, starts with either
a number or left parenthesis.

Consequently, the parser would like to apply Production 6 when a term is being replaced and a
next input symbol is a number or left parenthesis. Production 5 the other right-hand sidestarts
with a term, which can start with a factor, which can start with a number or left parenthesis, and
these are the same symbols that were used to choose Production 6. To summarize, the parser
must be able to choose between one of several right-hand sides by looking at the next input

symbol. It could make this decision in Productions 7 and 8, but it cannot make this decision in
Productions 5 and 6, because both of the latte
symbols. The previous situation, where the parser can't decide which production to apply, is
called a conflict, and one of the more difficult tasks of a compiler designer is creating a grammar
that has no conflicts in it. The next input symbol is called the look
parser looks ahead at it to resolve a conflict.

Table 1: Represented that the

Unfortunately, for reasons that are discussed in
by swapping the first and last production element, like this
very counterintuitive way to build a recursive
used to modify grammars so that a parser can hand
without any real explanation of why it works. Take it on f
recognizes the same input as the one we've been using.
the grammar momentarily. The modified grammar is inferior grammar in terms of self
documentation-it is difficult to look at it and see the language that's represented. On the other
hand, it works with a recursive-descent parser, and the previo

Table 2: Represented that the Different Grammer.

The symbol is an end-of-input marker. For parsing,
(|-)is treated as an input token, and 1

Basics in Compiler Design

symbol. It could make this decision in Productions 7 and 8, but it cannot make this decision in
Productions 5 and 6, because both of the latter productions can start with the same set of terminal
symbols. The previous situation, where the parser can't decide which production to apply, is
called a conflict, and one of the more difficult tasks of a compiler designer is creating a grammar

no conflicts in it. The next input symbol is called the look-ahead symbol because the
parser looks ahead at it to resolve a conflict.

1: Represented that the Different Statements with its Expression.

Unfortunately, for reasons that are discussed in Chapter Four, you can't get rid of the recursion
t production element, like this so the grammar must be modified in a

very counterintuitive way to build a recursive-descent parser for it. Several techniques can be
fy grammars so that a parser can handle them. I'll use one of them now, however,

without any real explanation of why it works. Take it on faith that the grammar in Table
t as the one we've been using. I'll discuss the 1- and E tha

The modified grammar is inferior grammar in terms of self
it is difficult to look at it and see the language that's represented. On the other

descent parser, and the previous grammar doesn't.

2: Represented that the Different Grammer.

input marker. For parsing, the end of the file is. The e
treated as an input token, and 1- represents the end of input in the grammar. In this

36 Basics in Compiler Design

symbol. It could make this decision in Productions 7 and 8, but it cannot make this decision in
r productions can start with the same set of terminal

symbols. The previous situation, where the parser can't decide which production to apply, is
called a conflict, and one of the more difficult tasks of a compiler designer is creating a grammar

ahead symbol because the

Different Statements with its Expression.

Chapter Four, you can't get rid of the recursion
so the grammar must be modified in a

descent parser for it. Several techniques can be
. I'll use one of them now, however,

aith that the grammar in Table 2
and E that appears in

The modified grammar is inferior grammar in terms of self-
it is difficult to look at it and see the language that's represented. On the other

us grammar doesn't.

The end input symbol
n the grammar. In this

grammar, Production I is expanded if the current input symbol is
Production 2 is used. Note that an explicit end
in which case 1- is implied as the rightmo
whose left-hand side appears at the apex of the parse tree
removes the entire right-hand side in the current grammar, you can use the following as an
alternate starting production:

statements ���� E | expression ; statements

In English: statements can go to an empty string followed by
The replacement of the left-hand side by
symbol doesn't match a legallookahead symbol. In the current grammar, a term is replaced with
the right-hand side *factor term' if the look
is replaced withE if the next input symbol isn't a*· The proce
which shows a parse of 1 + 2 using the modified grammar. The E
going on forever.

Figure 3: Represented that the Tree Production Stops.

Note that E is a terminal symbol that is not a token. It always appears at the end of a branch in
the parse tree, so it is a terminal, but it does not represent a corresponding token in the input
stream Just the opposite it represents the absence of a part

Basics in Compiler Design

Production I is expanded if the current input symbol is the end of input, otherwise
Production 2 is used. Note that an explicit end-of-input marker is often omitted from a

is implied as the rightmost symbol of the starting production
s at the apex of the parse tree. Since eliminating the 1

hand side in the current grammar, you can use the following as an

E | expression ; statements

In English: statements can go to an empty string followed by an implied end-
hand side by ɛ the empty string occurs whenever the current input

ch a legallookahead symbol. In the current grammar, a term is replaced with
hand side *factor term' if the look-ahead symbol the next input symbol

is replaced withE if the next input symbol isn't a*· The process is demonstrated i
which shows a parse of 1 + 2 using the modified grammar. The E-production stops things from

: Represented that the Tree Production Stops.

Note that E is a terminal symbol that is not a token. It always appears at the end of a branch in
the parse tree, so it is a terminal, but it does not represent a corresponding token in the input

ust the opposite it represents the absence of a particular token in the input stream

37 Basics in Compiler Design

end of input, otherwise,
input marker is often omitted from a grammar,
bol of the starting production the production

. Since eliminating the 1- symbol
hand side in the current grammar, you can use the following as an

-of-input marker.
occurs whenever the current input

ch a legallookahead symbol. In the current grammar, a term is replaced with
next input symbol is a*· The term'

ss is demonstrated in Figure 3,
production stops things from

Note that E is a terminal symbol that is not a token. It always appears at the end of a branch in
the parse tree, so it is a terminal, but it does not represent a corresponding token in the input

ular token in the input stream.

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed

Email Id

You can prove to yourself that the grammar

way-as a syntax diagram. We saw earlier that a syntax diagram can represent the entire syntactic

structure of a parse, but you can also use it in a more limited sense to represent the syntax of a

single production. Syntax diagrams are useful in writing recursive

they translate directly into flow charts

can use them as a map that describ

They are also somewhat more intuitive to an uninitiated reader, so they often make better

documentation than a formal grammar. I'll translate our grammar into

steps. First, several of the productions can be merged i

Productions 3, 4, and 5 of the grammar. The E production is represented by the uninterrupted

line that doesn't go through a box. You c

graph for the reference to it in the top graph, and the same process can be applied to Productions

6, 7, and 8.

Figure 1: Represented that the Execution of Grammar.

The entire grammar is represented as a syntax diagram in

for example, defines a statement as a list of one or more semicolon

same thing is accomplished by

statements � expression ;

 | expression ; statements

but the BNF form is harder to understand.

Basics in Compiler Design

CHAPTER 6

SYNTAX DIAGRAMS

Dr. Uthama Kumar A

Department of Data Science & Analytics, School of Sciences,

(Deemed-to-be University), Bangalore-27, India

Email Id- uthamakumar.a@jainuniversity.ac.in

lf that the grammar works as expected by representing it in a different

as a syntax diagram. We saw earlier that a syntax diagram can represent the entire syntactic

u can also use it in a more limited sense to represent the syntax of a

single production. Syntax diagrams are useful in writing recursive-descent compilers because

late directly into flow charts that are the main reason we're looking at them now

can use them as a map that describes the structure of the parser more on this in a moment

They are also somewhat more intuitive to an uninitiated reader, so they often make better

documentation than a formal grammar. I'll translate our grammar into a syntax diagram in two

steps. First, several of the productions can be merged into a single diagram. Figure 1

Productions 3, 4, and 5 of the grammar. The E production is represented by the uninterrupted

line that doesn't go through a box. You can combine these two graphs by substituting the bottom

graph for the reference to it in the top graph, and the same process can be applied to Productions

: Represented that the Execution of Grammar.

The entire grammar is represented as a syntax diagram in the above figure. The topmost diagram,

for example, defines a statement as a list of one or more semicolon-delimited expressions. The

expression ;

| expression ; statements

but the BNF form is harder to understand.

38 Basics in Compiler Design

Department of Data Science & Analytics, School of Sciences,

works as expected by representing it in a different

as a syntax diagram. We saw earlier that a syntax diagram can represent the entire syntactic

u can also use it in a more limited sense to represent the syntax of a

descent compilers because

we're looking at them now. You

es the structure of the parser more on this in a moment.

They are also somewhat more intuitive to an uninitiated reader, so they often make better

a syntax diagram in two

nto a single diagram. Figure 1 represents

Productions 3, 4, and 5 of the grammar. The E production is represented by the uninterrupted

an combine these two graphs by substituting the bottom

graph for the reference to it in the top graph, and the same process can be applied to Productions

above figure. The topmost diagram,

delimited expressions. The

39 Basics in Compiler Design

The merged diagram also demonstrates graphically how the modified grammar Diagram shows

how works. Just look at it like a flow chart, where each box is a subroutine, and each circle or

modified grammar works. ellipse is the symbol that must be in the input when the subroutine

returns. Passing through the circled symbol removes a terminal from the input stream, and

passing through a box represents a subroutine call that evaluates a nonterminal. A Recursive-

Descent Expression Compiler We now know enough to build a small compiler, using the

expression grammar we've been looking at. Our goal is to take simple arithmetic expressions as

input and generate code that evaluates those expressions at run time. An expression like a+b*c+d

is translated to the following intermediate code:

t0 =_a;

t1= _b;

t1= _c;

t0= t1;

t0= _d;

The Lexical Analyzer The first order of business is defining a token set. Except for numbers and

Expression token sets. Identifiers, all the lexemes are single characters. Remember, a token is an

input symbol taken as a unit, and a lexeme is the string that represents that symbol. A

NUM_OR_ID token is used both for numbers and identifiers; so, they are made up of a series of

contiguous characters in the range ' 0' -' 9', ' a'-' z', or 'A'-' z'. The tokens themselves are defined

with the macros at the top of lex.h, Listi. The lexical analyzer translates a semicolon into a SEMI

token, a series of digits into a NUM_OR_ID token, and so on.

The three external variables at the bottom of lex.hare used by the lexical analyzer to pass

information to the parser. yytext points at the current lexeme, which is not ' \0' terminated;

yy1eng is the number of characters in the lexeme; and yylineno is the current input line number.

I've used these somewhat strange names because both lex and LEX use the same names. Usually,

I try to make global-variable names begin with an upper-case letter and macro names are in all

caps. This way you can distinguish these names from local-variable names, which are always

made up of lowercase letters only. It seemed best to retain UNIX compatibility in the current

situation, however.

Global Optimization

The global optimization phase is optional. Its purpose is simply to make the object program more
efficient in space and/or time. It involves examining the sequence of atoms put out by the parser
to find redundant or unnecessary instructions or inefficient code. Since it is invoked before the
code generator, this phase is often called machine-independent optimization. For example, in the
following program segment:

The Phases of a Compiler

stmt1

go to label1

40 Basics in Compiler Design

stmt2

stmt3

label2: stmt4

stmt2 and stmt3 can never be executed. They are unreachable and can be eliminated from the
object program. A second example of global optimization is shown below:

for (i=1; i<=100000; i++)

{ x = Math.sqrt (y); // square root method

System.out.println (x+i);

}

In this case, the assignment to x need not be inside the loop since y does not change as the loop
repeats it is a loop invariant. In the global optimization phase, the compiler would move the
assignment to x out of the loop in the object program:

x = Math.sqrt (y); // loop invariant

for (i=1; i<=100000; i++)

System.out.println (x+i);

This would eliminate 99,999 unnecessary calls to the sqrt method at run time. The reader is
cautioned that global optimization can have a serious impact on run-time debugging. For
example, if the value of y in the above example was negative, causing a run-time error in the sqrt
function, the user would be unaware of the actual location of that portion of code which is called
the sqrt function, because the compiler would have moved the offending statement usually
without informing the programmer. Most compilers that perform global optimization also have a
switch with which the user can turn optimization on or off. When debugging the program, the
switch would be off. When the program is correct, the switch would be turned on to generate an
optimized version for the user. One of the most difficult problems for the compiler writer is
making sure that the compiler generates optimized and optimized object modules, from the same
source module, which are equivalent.

Code Generation

Most Java compilers produce an intermediate form, known as byte code, which can be

interpreted by the Java run-time environment. In this book, we will be assuming that our

compiler is to produce native code for a particular machine. It is assumed that the student has had

some experience with assembly language and machine language, and is aware that the computer

is capable of executing only a limited number of primitive operations on operands with numeric

memory addresses, all encoded as binary values. In the code generation phase, atoms or syntax

trees are translated to machine language binary instructions, or to assembly language, in which

case the assembler is invoked to produce the object program. Symbolic address statement labels

are translated to reloadable memory addresses at this time. For target machines with several CPU

registers, the code generator is responsible for register allocation. This means that the compiler

must be aware of which registers are being used for particular purposes in the generated

program, and which become available as code is generated. For example, an ADD atom might be

translated into three machine language instructions:

• load the first operand into a register,

• add the second operand to that register,

• store the result, as shown for the atom (ADD, a

LOD r1,a // Load an

ADD r1,b // Add b to reg. 1

STO r1,temp // Store reg. 1 in temp

Local Optimization

The local optimization phase is also optional and is needed only to make the object program
more efficient. It involves examining
find unnecessary or redundant instructions. For this reason, local optimization is often called
machine-dependent optimization. An example of a local optimization would be load/store
optimization. An addition operation in the source program might result in three instruct
the object program:

i. Load one operand into a register,
ii. add the other operand to the register,
iii. store the result.

Consequently, the expression a + b + c in the source program m
instructions as code generator output:

Note that some of these instructions (those marked with * in the comment) can be eliminated
without changing the effect of the program, making the object program both smaller and faster:

A diagram showing the phases of compilation and the output of each phase is shown in Figure
1.4. Note that the optimization phases may be omitted that is
from the Syntax phase to the Code Generator, and the instructions
the Code Generator to the compiler output file.
between phases. One way to handle this is for each phase to run from start to finish separately,
writing output to a disk file. For example, lexical analysis is started and creates a file of tokens
dosplay in Figure 2.

Basics in Compiler Design

h become available as code is generated. For example, an ADD atom might be

to three machine language instructions:

load the first operand into a register,

add the second operand to that register,

store the result, as shown for the atom (ADD, a, b,temp):

 into reg. 1

ADD r1,b // Add b to reg. 1

STO r1,temp // Store reg. 1 in temp

The local optimization phase is also optional and is needed only to make the object program
more efficient. It involves examining sequences of instructions put out by the code generator to
find unnecessary or redundant instructions. For this reason, local optimization is often called

dependent optimization. An example of a local optimization would be load/store
An addition operation in the source program might result in three instruct

ne operand into a register,
perand to the register,

Consequently, the expression a + b + c in the source program might result in the following
instructions as code generator output:

Note that some of these instructions (those marked with * in the comment) can be eliminated
without changing the effect of the program, making the object program both smaller and faster:

A diagram showing the phases of compilation and the output of each phase is shown in Figure
tion phases may be omitted that is the atoms may be passed directly

from the Syntax phase to the Code Generator, and the instructions may be passed directly from
or to the compiler output file. A word needs to be said about the flow of control

between phases. One way to handle this is for each phase to run from start to finish separately,
r example, lexical analysis is started and creates a file of tokens

41 Basics in Compiler Design

h become available as code is generated. For example, an ADD atom might be

The local optimization phase is also optional and is needed only to make the object program
sequences of instructions put out by the code generator to

find unnecessary or redundant instructions. For this reason, local optimization is often called
dependent optimization. An example of a local optimization would be load/store

An addition operation in the source program might result in three instructions in

ight result in the following

Note that some of these instructions (those marked with * in the comment) can be eliminated
without changing the effect of the program, making the object program both smaller and faster:

A diagram showing the phases of compilation and the output of each phase is shown in Figure
the atoms may be passed directly

may be passed directly from
A word needs to be said about the flow of control

between phases. One way to handle this is for each phase to run from start to finish separately,
r example, lexical analysis is started and creates a file of tokens as

Figure 2: Represented that the Lexical Analysis

Then, after the entire source program has been scanned, the syntax analysis phase is started,
reads the entire file of tokens, and creates a file of atoms. The other phases continue in this
manner; this would be a multiple
way for the flow of control to proceed would be to start up the syntax analysis
time it needs a token it calls the lexical analysis phase as a subroutine, which reads enough
source characters to produce one token and returns it to the parser. Whenever the parser has
scanned enough source code to produce an atom, the
the code generator a subroutine; this would be a single

Basics in Compiler Design

: Represented that the Lexical Analysis.

Then, after the entire source program has been scanned, the syntax analysis phase is started,
file of tokens, and creates a file of atoms. The other phases continue in this

manner; this would be a multiple-pass compiler since the input is scanned several times. Another
flow of control to proceed would be to start up the syntax analysis

time it needs a token it calls the lexical analysis phase as a subroutine, which reads enough
source characters to produce one token and returns it to the parser. Whenever the parser has
scanned enough source code to produce an atom, the atom is converted to object code by calling
the code generator a subroutine; this would be a single-pass compiler.

42 Basics in Compiler Design

Then, after the entire source program has been scanned, the syntax analysis phase is started,
file of tokens, and creates a file of atoms. The other phases continue in this

pass compiler since the input is scanned several times. Another
flow of control to proceed would be to start up the syntax analysis phase first. Each

time it needs a token it calls the lexical analysis phase as a subroutine, which reads enough
source characters to produce one token and returns it to the parser. Whenever the parser has

atom is converted to object code by calling

Assistant Professor, Department of Data Science &

Email Id

The phrase "pull yourself up by your bootstraps" inspired the term "bootstrapping", which refers

to using a curriculum as input

bootstrapping loader, which is used to initialize a computer after it is turned on, hence the phrase

"to boot" a computer. On this occasion, bootstrapping a compiler is being discussed, as shown i

the image below. For Sun Computer, we want to design a Java compiler. We decide to make two

simple programs instead of coding the whole thing in machine or assembly code. The first is a

machine assembly language compiler for a block of Java.

The second is a Java subset language

Java subset language, referred to as "Sub", is simply Java minus many extraneous features such

as enumerated types, unions, switch instructions, etc. The computer's memory is

first compiler, and the second is used as input. The result is the compiler we've been looking for,

a Sun-based compiler that thus outputs object code in Sun machine language and supports the

entire Java language. It is an iterative method

with some larger subset. We keep doing this until we have a compiler that can handle the entire

Java language as well.

Cross Compiling

The computer industry continues to produce great machines with

programming languages. For every programming language currently in use, a new compiler has

to be created every time a new computer is built. Cross

used to simplify this problem. The gra

Let's imagine we develop a Java compiler for Sun and a new machine called Mac. We want to

Basics in Compiler Design

CHAPTER 7

BOOTSTRAPPING

Dr. Thirukumaran Subbiramani

Department of Data Science & Analytics, School of Sciences, Jain(Deemed

Bangalore-27, India

Email Id- s.thirukumaran@jainuniversity.ac.in

The phrase "pull yourself up by your bootstraps" inspired the term "bootstrapping", which refers

t for another program. The student may be familiar with the

bootstrapping loader, which is used to initialize a computer after it is turned on, hence the phrase

"to boot" a computer. On this occasion, bootstrapping a compiler is being discussed, as shown i

the image below. For Sun Computer, we want to design a Java compiler. We decide to make two

ing the whole thing in machine or assembly code. The first is a

language compiler for a block of Java.

is a Java subset language-written compiler for the Java language as a whole. The

Java subset language, referred to as "Sub", is simply Java minus many extraneous features such

as enumerated types, unions, switch instructions, etc. The computer's memory is

first compiler, and the second is used as input. The result is the compiler we've been looking for,

based compiler that thus outputs object code in Sun machine language and supports the

entire Java language. It is an iterative method that starts with a minor subset of Java and ends

with some larger subset. We keep doing this until we have a compiler that can handle the entire

The computer industry continues to produce great machines with advanced and sometimes trivial

programming languages. For every programming language currently in use, a new compiler has

to be created every time a new computer is built. Cross-compiling is one such technique that is

used to simplify this problem. The graphic below shows a two-step cross-generation process.

Let's imagine we develop a Java compiler for Sun and a new machine called Mac. We want to

43 Basics in Compiler Design

Analytics, School of Sciences, Jain(Deemed-to-be University),

The phrase "pull yourself up by your bootstraps" inspired the term "bootstrapping", which refers

another program. The student may be familiar with the

bootstrapping loader, which is used to initialize a computer after it is turned on, hence the phrase

"to boot" a computer. On this occasion, bootstrapping a compiler is being discussed, as shown in

the image below. For Sun Computer, we want to design a Java compiler. We decide to make two

ing the whole thing in machine or assembly code. The first is a

written compiler for the Java language as a whole. The

Java subset language, referred to as "Sub", is simply Java minus many extraneous features such

as enumerated types, unions, switch instructions, etc. The computer's memory is loaded with the

first compiler, and the second is used as input. The result is the compiler we've been looking for,

based compiler that thus outputs object code in Sun machine language and supports the

that starts with a minor subset of Java and ends

with some larger subset. We keep doing this until we have a compiler that can handle the entire

advanced and sometimes trivial

programming languages. For every programming language currently in use, a new compiler has

compiling is one such technique that is

generation process.

Let's imagine we develop a Java compiler for Sun and a new machine called Mac. We want to

build a Java compiler for Mac as an alternative to

language. The first step is to use this compiler as input to the Sun Java compiler. As a result, Java

is translated into Mac machine code via a compiler that runs on Sun.

The next step is to load this compiler into Sun and once again use the input from the Java

compiler. This time, the result is the editor we planned to bu

It should be emphasized that the entire process can be completed even before a MAC is created.

All we need to know is the architecture

modes, of the Mac.

Compiling To Intermediate Form

It is possible to compile into an intermediate form, a language somewhere between source high

level language and machine language, as we indicated in our discussion of interpre

One such example of an intermediate form is the stream of atoms that the parser emits. The main

advantage of this approach is that only one translator or interpreter

form on each computer and only one translator

from each high-level language these in

As shown in the picture below, we

computer as well as three translators for ea

as intermediate. Had the intermediate form not been employed, a total of six different compilers

would have been required. If there were n high

typically need n x m compilers. We would need (n + m)/2 compilers using the intermediate form,

assuming that each front end and each back end are half of a compiler

Basics in Compiler Design

build a Java compiler for Mac as an alternative to building a compiler in machine assembly

tep is to use this compiler as input to the Sun Java compiler. As a result, Java

is translated into Mac machine code via a compiler that runs on Sun.

The next step is to load this compiler into Sun and once again use the input from the Java

er. This time, the result is the editor we planned to build a Mac-compatible Java compiler.

It should be emphasized that the entire process can be completed even before a MAC is created.

ed to know is the architecture the instruction set, instruction formats,

Compiling To Intermediate Form

It is possible to compile into an intermediate form, a language somewhere between source high

level language and machine language, as we indicated in our discussion of interpre

One such example of an intermediate form is the stream of atoms that the parser emits. The main

ch is that only one translator or interpreter is needed for the intermediate

mputer and only one translator or interpreter is needed for the intermediate form

these include Each is called a back end.

As shown in the picture below, we will need two code generators or interpreters

computer as well as three translators for each of the three high-level languages and two machines

as intermediate. Had the intermediate form not been employed, a total of six different compilers

would have been required. If there were n high-level languages and m machines, we would

x m compilers. We would need (n + m)/2 compilers using the intermediate form,

assuming that each front end and each back end are half of a compiler as display in Figure

44 Basics in Compiler Design

building a compiler in machine assembly

tep is to use this compiler as input to the Sun Java compiler. As a result, Java

The next step is to load this compiler into Sun and once again use the input from the Java-written

compatible Java compiler.

It should be emphasized that the entire process can be completed even before a MAC is created.

ion formats, and addressing

It is possible to compile into an intermediate form, a language somewhere between source high-

level language and machine language, as we indicated in our discussion of interpreters above.

One such example of an intermediate form is the stream of atoms that the parser emits. The main

is needed for the intermediate

is needed for the intermediate form

will need two code generators or interpreters for each

level languages and two machines

as intermediate. Had the intermediate form not been employed, a total of six different compilers

level languages and m machines, we would

x m compilers. We would need (n + m)/2 compilers using the intermediate form,

as display in Figure 1.

Figure 1: Represented that the Compiling To Intermediate Form.

P-code, a highly well-liked intermediate form for computers like the PDP
was created some years ago at the University of California, San Diego. High
C are often utilized as intermediary forms nowadays. Another intermediate format t
widely utilized on the Internet is the Java Virtual Machine also known as Java byte code

Compiler-Compilers

At this point, a large portion of compiler design is so well

The source language and target machine

that the compiler may be created automatically and a

Lexical Analysis

This paragraph examines how lexical analysis is implemented by compilers. Lexical analysis is
the process of identifying words in a source program, as stated in Chapter 1. Next, the compiler
passes these words as tokens, each token having a class and a value. A table of identifiers, a
symbol table, and a table of numeric constants are good examples of tabl
at this stage of compilation. The lexical analysis phase may also begin the development of tables
that will be needed later in the compilation. However, before moving on to lexical analysis, we
must ensure that the learner is famili
that are essential to the design of a lexical analyzer.

Formal Languages

The study of formal languages, which is important for understanding programming languages
and compilers, is introduced in t
whereas a formal language is something that can be spoken carefully and is suitable for computer
use. The grammar of Java is an example of a technical language, although as will be explored in
the following sections, a formal language may also have no apparent significance or purpose.

Basics in Compiler Design

1: Represented that the Compiling To Intermediate Form.

liked intermediate form for computers like the PDP-8 and Apple II series,
was created some years ago at the University of California, San Diego. High-level languages like

as intermediary forms nowadays. Another intermediate format t
et is the Java Virtual Machine also known as Java byte code

At this point, a large portion of compiler design is so well-known that automation is possible.

The source language and target machine requirements may be written by the compiler author so

er may be created automatically and a compiler-compiler does this.

This paragraph examines how lexical analysis is implemented by compilers. Lexical analysis is
ess of identifying words in a source program, as stated in Chapter 1. Next, the compiler

passes these words as tokens, each token having a class and a value. A table of identifiers, a
symbol table, and a table of numeric constants are good examples of tables that can be prepared
at this stage of compilation. The lexical analysis phase may also begin the development of tables

compilation. However, before moving on to lexical analysis, we
must ensure that the learner is familiar with the formal linguistics and automata theory concepts
that are essential to the design of a lexical analyzer.

The study of formal languages, which is important for understanding programming languages
and compilers, is introduced in this section. A natural language is commonly used
whereas a formal language is something that can be spoken carefully and is suitable for computer
use. The grammar of Java is an example of a technical language, although as will be explored in

following sections, a formal language may also have no apparent significance or purpose.

45 Basics in Compiler Design

1: Represented that the Compiling To Intermediate Form.

8 and Apple II series,
level languages like

as intermediary forms nowadays. Another intermediate format that has been
et is the Java Virtual Machine also known as Java byte code.

known that automation is possible.

requirements may be written by the compiler author so

compiler does this.

This paragraph examines how lexical analysis is implemented by compilers. Lexical analysis is
ess of identifying words in a source program, as stated in Chapter 1. Next, the compiler

passes these words as tokens, each token having a class and a value. A table of identifiers, a
es that can be prepared

at this stage of compilation. The lexical analysis phase may also begin the development of tables
compilation. However, before moving on to lexical analysis, we

ar with the formal linguistics and automata theory concepts

The study of formal languages, which is important for understanding programming languages
his section. A natural language is commonly used by humans,

whereas a formal language is something that can be spoken carefully and is suitable for computer
use. The grammar of Java is an example of a technical language, although as will be explored in

following sections, a formal language may also have no apparent significance or purpose.

46 Basics in Compiler Design

Language Elements

Before we build on the language let's make sure the learner understands some basic concepts

from discrete math. A set is a group of distinct objects. We usually list each element of a set only

once, while it is acceptable to list an element more than once. The elements can also be written in

any order. For example, the words "boy, girl, animal" are a set, yet they represent the same group

as "girl, boy, animal, girl". A set can contain an infinite number of things. The empty set often

referred to as the set with no elements, is still a set and is denoted either by or by. A list of

characters in an alphabet is called a string.

The components of a string are not necessarily unique, and it matters how they are listed.

Examples include "abc" and "cba," as well as "abb" and "ab." Even if a string does not contain

any characters, it is still a string of letters from a given alphabet, and we refer to this string as the

null string and identify it by the symbol. It is important to note that, for example, if we are

talking about a string of zeros and ones that is, strings beginning with the letters "0, 1", then "" is

a string of zeros and ones. This chapter will cover languages as well as upcoming languages. A

formal language is made up of a set of letters. The learner must understand the difference

between a set and a string, and in particular the difference between the empty set and the null

string, to understand this. The following are examples of languages from the alphabet {0,1}:

• {0,10,1011}

• { }

• {ɛ,0,00,000,0000,00000,... }

• The set of all strings of zeroes and ones having an even number of ones.

While the latter two cases are endless, the first two examples are finite sets. The null string is
present in the latter two samples but not the first two. Four languages that may be represented by
the alphabet of characters on a computer keyboard are as follows:

• {0,10,1011}

• { ɛ }

• Java syntax

• Italian syntax

The fourth example is a natural language in which each string is a lossless Java program while
the third is the syntax of a computer language in which each string in the language is a
grammatically correct Italian sentence. The second example is not the empty set.

Finite State Machines

We now face a challenge when endeavoring to exactly define the strings in an endless or very

huge language. When characterizing the language in English, we are unable to be as precise

about which strings are included and which are excluded from the language. Using a finite state

machine, a mathematical or fictitious device is indeed a way to solve this issue. Although we

won't automatically build this machine, we will characterize it in mathematical terms so that its

functioning is completely evident. Automata theory is the study underlying theoretical machines,

for example, the finite state machine, as an automaton is another term for a machine. An example

of a finite machine of states is:

i. A finite collection of states, of those which zero or more are labelled accepted states

and one is classified

the starting point.

ii. A state transition function with a state and an inputtin

from a given input alphabet

Here is how the gadget works. The input is composed of a string of symbols drawn from either

input alphabet. When the machine initially begins, it is in its initial

which relies on both the input symbol and the machine's current state, illustrates how the

machine changes state whenever a symbol from the input string is read. After reading the whole

input string, the machine is either in eith

string is found in accepting conditions, we declare that it has been accepted. If not, the incoming

string has been declined because it is invalid. The finite state machine provides a precise

definition of a language by constructing the language from the set of all possible input strings.

Finite state machines may be represented in a variety of ways, one of which is using state

diagrams. A finite state machine is shown

Figure 2: Represented that the

The transition function is shown by the arcs labeled with the input symbols that go from one

state to the next, and each state of the machine is represented by a circle. The initial state is

shown by an arc with no state at the source (tail) end, while the acceptor states are double circles.

When the machine is in position B a 0 is entered, jumps to position C. When the input is 1 while

the machine is in state B, the machine remains in state

accepted state is C. Any string of ones and zeros that begins with a one and ends with a zero is

accepted by this machine because these strings

acceptable position after reading the entire input string. Will bring in

finite state system is shown in Figure

Basics in Compiler Design

finite collection of states, of those which zero or more are labelled accepted states

and one is classified as the beginning state. A receptive state might alternatively be

A state transition function with a state and an inputting symbol as its two parameters

from a given input alphabet. In a conclusion, it returns a state.

Here is how the gadget works. The input is composed of a string of symbols drawn from either

input alphabet. When the machine initially begins, it is in its initial state. The above equation,

which relies on both the input symbol and the machine's current state, illustrates how the

machine changes state whenever a symbol from the input string is read. After reading the whole

input string, the machine is either in either an accepted state or a non-accepting state. If the input

string is found in accepting conditions, we declare that it has been accepted. If not, the incoming

string has been declined because it is invalid. The finite state machine provides a precise

nition of a language by constructing the language from the set of all possible input strings.

Finite state machines may be represented in a variety of ways, one of which is using state

diagrams. A finite state machine is shown as an example in the following Figure

2: Represented that the Finite State Machine.

The transition function is shown by the arcs labeled with the input symbols that go from one

state to the next, and each state of the machine is represented by a circle. The initial state is

shown by an arc with no state at the source (tail) end, while the acceptor states are double circles.

When the machine is in position B a 0 is entered, jumps to position C. When the input is 1 while

the machine is in state B, the machine remains in state B. The initial state is A, and the only

accepted state is C. Any string of ones and zeros that begins with a one and ends with a zero is

machine because these strings and only these will bring the machine to an

ading the entire input string. Will bring in in the image below, another

in Figure 3.

47 Basics in Compiler Design

finite collection of states, of those which zero or more are labelled accepted states

the beginning state. A receptive state might alternatively be

ol as its two parameters

Here is how the gadget works. The input is composed of a string of symbols drawn from either

state. The above equation,

which relies on both the input symbol and the machine's current state, illustrates how the

machine changes state whenever a symbol from the input string is read. After reading the whole

accepting state. If the input

string is found in accepting conditions, we declare that it has been accepted. If not, the incoming

string has been declined because it is invalid. The finite state machine provides a precise

nition of a language by constructing the language from the set of all possible input strings.

Finite state machines may be represented in a variety of ways, one of which is using state

igure2.

The transition function is shown by the arcs labeled with the input symbols that go from one

state to the next, and each state of the machine is represented by a circle. The initial state is

shown by an arc with no state at the source (tail) end, while the acceptor states are double circles.

When the machine is in position B a 0 is entered, jumps to position C. When the input is 1 while

B. The initial state is A, and the only

accepted state is C. Any string of ones and zeros that begins with a one and ends with a zero is

and only these will bring the machine to an

the image below, another

Figure 3: Reprinted that the Finite State System.

Any string of ones and zeros that also contains an even number of numbe

machine which includes the zero string

input alphabet for each of these devices is 0 and 1. It is important to note that the state transitions

in each of these machines are consistent and that they are fully described. This indicates that for

each state, exactly one arc identified by each possible input symbol leaves that state. These

instruments are called deterministic for this reason. In our study

machines will be used. Another example of a finite state machine is a table, in

are given names (A, B, C, etc.), and these names identify the rows of the table. Input symbols are

used to identify columns. Each item in the table represents the future state of the machine with

input and its current state. Asterisks are

reported in the table, as seen in the accompanying figure, is the initial state. It is simple to verify

that the machine is fully described and deterministic using the table representation. However,

when developing or studying finite state machines, many students find it easier to work with the

state diagram model.

Basics in Compiler Design

3: Reprinted that the Finite State System.

Any string of ones and zeros that also contains an even number of numbers is accepted by

machine which includes the zero string. A parity checker is a name given to such a device. The

input alphabet for each of these devices is 0 and 1. It is important to note that the state transitions

in each of these machines are consistent and that they are fully described. This indicates that for

y one arc identified by each possible input symbol leaves that state. These

instruments are called deterministic for this reason. In our study, only deterministic finite

machines will be used. Another example of a finite state machine is a table, in

are given names (A, B, C, etc.), and these names identify the rows of the table. Input symbols are

used to identify columns. Each item in the table represents the future state of the machine with

input and its current state. Asterisks are used to indicate acceptor states, and the first state

reported in the table, as seen in the accompanying figure, is the initial state. It is simple to verify

that the machine is fully described and deterministic using the table representation. However,

n developing or studying finite state machines, many students find it easier to work with the

48 Basics in Compiler Design

rs is accepted by this

name given to such a device. The

input alphabet for each of these devices is 0 and 1. It is important to note that the state transitions

in each of these machines are consistent and that they are fully described. This indicates that for

y one arc identified by each possible input symbol leaves that state. These

only deterministic finite-state

machines will be used. Another example of a finite state machine is a table, in which the states

are given names (A, B, C, etc.), and these names identify the rows of the table. Input symbols are

used to identify columns. Each item in the table represents the future state of the machine with

used to indicate acceptor states, and the first state

reported in the table, as seen in the accompanying figure, is the initial state. It is simple to verify

that the machine is fully described and deterministic using the table representation. However,

n developing or studying finite state machines, many students find it easier to work with the

49 Basics in Compiler Design

CHAPTER 8

REGULAR EXPRESSIONS

Kunal Dey

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- d.kunal@jainuniversity.ac.in

Another method for specifying languages is regular expressions. These are formulas or

expressions consisting of three possible operations on languages: union, concatenation, and

Kleene star.

i. Union Since a language is a set, this operation is the union operation as defined in set

theory. The union of two sets is that set which contains all the elements in each of the

two sets and nothing else. The union operation on languages is designated with a ‘+’.

For example,

{abc, ab, ba} + {ba, bb} = {abc, ab, ba, bb}

Note that the union of any language with the empty set is that language:

L + {} = L

ii. Concatenation:To define the concatenation of languages, we must first define the

concatenation of strings. This operation will be designated by a raised dot whether

operating on strings or languages, which may be omitted. This is simply the

juxtaposition of two strings forming a new string. For example,

abc · ba = abcba

Note that any string concatenated with the null string is that string itself:

s · ɛ = s.

In what follows, we will omit the quote marks around strings to avoid cluttering the page

needlessly. The concatenation of two languages is that language is formed by concatenating each

string in one language with each string in the other language. For example,

{ab, a, c} · {b, ɛ} = {ab · b, ab · ɛ, a · b, a · ɛ, c · b, c · ɛ} = {abb, ab, a, cb, c}

In this example, the string ab need not be listed twice. Note that if L1 and L2 are two languages,

then L1 · L2 is not necessarily equal to L2 · L1. Also, L ·{ ɛ } = L, but L ·φ = φ .

iii. Kleene * This operation is a unary operation designated by a postfix asterisk and is

often called closure. If L is a language, we define:

50 Basics in Compiler Design

L0 = {ɛ}

L1 = L

L2 = L · L

 .

.

.

Ln = L · Ln-1

L* = L 0 + L1 + L2 + L3 + L4 + L5 + ...

Note that φ∗ = {ɛ}. Intuitively, Kleene * generates zero or more concatenations of strings from
the language to which it is applied. We will use a shorthand notation in regular expressions: if x
is a character in the input alphabet, then x = {’x’}; i.e., the character x represents the set
consisting of one string of length 1 consisting of the character x. This simplifies some of the
regular expressions we will write:

0 + 1 = {0} + {1} = {0, 1}

0 + ɛ = {0, ɛ}

A regular expression is an expression involving the above three operations and languages. Note
that Kleene * is unary (postfix) and the other two operations are binary. Precedence may be
specified with parentheses, but if parentheses are omitted, concatenation takes precedence over
union, and Kleene * takes precedence over concatenation. If L1, L2 and L3 are languages, then:

L1 + L2 · L3 = L1 + (L2 · L3)

L1 · L2∗ = L1 · (L2∗)

An example of a regular expression is: (0+1)* To understand what strings are in this language,
let L = {0,1}. We need to find:

L*: L0 = { ɛ }

L1 = {0, 1}

L2 = L · L1 = {00, 01, 10, 11}

L3 = L · L2 = {000, 001, 010, 011, 100, 101, 110, 111}

.

.

.

L = { ɛ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, ...}

This is the set of all strings of zeros and ones.

Another example: (0+1)∗.0 = 1(0+1)∗0 = {10, 100, 110, 1000, 1010, 1100, 1110, ...} This is the
set of all strings of zeros and ones which begin with a 1 and end with a 0.

Note that we do not need to be concerned with the order of evaluation of several concatenations
in one regular expression, since it is an associative operation. The same is true of union:

51 Basics in Compiler Design

L · (L · L) = (L · L) · L

L + (L + L) = (L + L) + L

A word of explanation on nested Kleene *’s is in order. When a * operation occurs within
another * operation, the two are independent. That is, in generating a sample string, each *
generates 0 or more occurrences independently. For example, the regular expression (0*1)*
could generate the string 0001101. The outer * repeats three times; the first time the inner *
repeat three times, the second time the inner * repeat zero times, and the third time the inner *
repeats once.

Lexical Tokens

The first phase of a compiler is called lexical analysis. Because this phase scans the input string
without backtracking i.e. by reading each symbol once and processing it correctly, it is often
called a lexical scanner. As implied by its name, lexical analysis attempts to isolate the words in
an input string.

We use the word in a technical sense. A word, also known as a lexeme, a lexical item, or a
lexical token, is a string of input characters which is taken as a unit and passed on to the next
phase of compilation. Examples of words are:

i. while, if, else, for, ... These are words which may have a particular predefined
meaning to the compiler, as opposed to identifiers which have no particular meaning.
Reserved words are keywords which are not available to the programmer for use as
identifiers. In most programming languages, such as Java and C, all keywords are
reserved. PL/1 is an example of a language which has keywords but no reserved
words.

ii. Identifiers: words that the programmer constructs to attach a name to a construct,
usually having some indication as to the purpose or intent of the construct. Identifiers
may be used to identify variables, classes, constants, functions, etc.

iii. Operators: symbols used for arithmetic, character, or logical operations, such as +,-
,=,!=, etc. Notice that operators may consist of more than one character.

iv. Numeric Constants:numbers such as 124, 12.35, 0.09E-23, etc. These must be
converted to a numeric format so that they can be used in arithmetic operations
because the compiler initially sees all input as a string of characters. Numeric
constants may be stored in a table.

v. Character Constants: single characters or strings of characters enclosed in quotes.

vi. Special Characters:characters used as delimiters such as .,(,),,,;. These are generally
single-character words.

vii. Comments:Though comments must be detected in the lexical analysis phase, they
are not put out as tokens to the next phase of compilation.

viii. White Space:Spaces and tabs are generally ignored by the compiler, except to serve
as delimiters in most languages, and are not put out as tokens.

ix. Newline: In languages with the free format, newline characters should also be
ignored, otherwise a newline token should be put out by the lexical scanner.

52 Basics in Compiler Design

An example of Java source input, showing the word boundaries and types is given below:

while (x33 <= 2.5e+33 - total) calc (x33) ; //!

1 6 2 3 4 3 2 6 2 6 2 6 6

A symbol table is built when identifiers are disputed during lexical analysis. No of how many
times an identifier appears in the source program, this data structure only saves it once.
Additionally, it keeps track of the kind of identifier and the location of any associated run-time
data such as the value allocated to a variable related to the identifier. For fast searching, this data
structure is most often set up as a binary search tree or hash table. The processing of the symbol
table is more complicated when block-structured languages like Java, C, or Algol are compiled.
Both representations of the identifier must be acknowledged since the same identifier seems to
have distinct declarations in other blocks or operations.

Block scopes may be specified in a single symbol table or by developed especially symbol tables
for each block. The scanner might just store the identifier in a character space array and provide
a reference to its first character to be able to do this at the parse or grammatical analysis stage of
the compiler. It is necessary to translate arithmetic constants into the internal environment form.
Consider the constant 3.4e+6 as a string of six characters which must be converted to basic
operations (or fixed point integer) format for the computer to use it in the required arithmetic
operations. We'll see that this is not a simple issue, hence the mass of compiler authors employ
library approaches to address it.

A stream of tokens, one for each word found in the input program, is the phase's output. Each
token has two components:

i. A class identifying the kind of token;

ii. A value that specifies whose class member it is.

iii. The token stream seen above may look something like this:

The above example might produce the following stream of tokens:

 Token Token

 Class Value

1 [code for while]

6 [code for (]

2 [ptr to symbol table entry for x33]

3 [code for <=]

4 [ptr to constant table entry for 2.5e+33]

3 [code for -]

2[ptr to symbol table entry for total] 6 [code for)]

2 [ptrto symbol table entry for calc]

6 [code for (]

2 [ptr to symbol table entry for x33]

53 Basics in Compiler Design

6 [code for)] 6 [code for ;]

Keep in mind that the remark is not made public. Additionally, the valuation portion may not
exist in all token types. In contrast, a left parenthesis might represent a token class despite
requiring a value to be supplied. This plan may undoubtedly be modified in certain methods to
improve efficiency. One assignment token could be sent out, for example, after identification and
an assignment operator. A symbol table pointer for the identifier would be the token's value
section.

Thus, rather than two tokens, the input string x = would be output as nothing more than a single
token. Additionally, each keyword may be a different token class, which will also dramatically
multiply the number of classes but might enable the syntax analysis step simpler. The scanner
must support this functionality if the source language is not case-sensitive. The words then,
tHeN, Then, and THEN, for example, all reflect the same keyword. The alphabetic letters might
all be translated to upper or lower case using preprocessing Java respects case.

Syntax Analysis

In contrast to lexical analysis, which separates the input into separate tokens, syntax analysis,
sometimes referred to as parsing, aims to reassemble these tokens. Back into something that
resembles the organization of the text, not a list of characters. The syntax tree of the sentence is a
kind of data structure that serves as this "something" in most cases. This building is a tree, as the
title indicates. The tokens discovered by the lexical analysis are represented by the leaves of this
tree, and when the leaves are scanned from left to right, the order matches that of the input text.
Therefore, the syntax tree's structure and labelling of its core nodes, as well as how different
leaves are joined, are both crucial. The syntax analysis must not only determine the structure of
the text document but also reject incorrect texts by highlighting syntax problems. More
sophisticated techniques are needed since syntax analysis has become less local compared lexical
analysis.

However, we use the same fundamental technique: A low-level language suited for efficient
execution is converted from a notation acceptable for human comprehension. It is known as
parser generation. Context-free grammars1, a recursive notation for defining collections of
strings and imposing a structure on each string individually, is the notation we employ for human
manipulation. Although this notation is occasionally virtually immediately translated into
recursive algorithms, it is often more practicable to build stack automata. These are comparable
to the machine language used for lexical analysis, but they also have the option of using a stack,
which enables symbol counting and non-local matching. We'll look at two approaches for
creating these automata. The first of them, LL, is the simplest but only applies to a small subset
of grammars. The SLR architecture, which we will examine in greater detail later, is more
intricate but supports a larger range of grammars. Consequently, none of them applies to all
context-free grammars. Some tools can handle all context-free grammars, but they may be
exceedingly slow, which is why the majority of parser generators limit the class available input
grammars.

Context-free Grammars

Context-free grammars describe collections of strings, or languages, similarly to regular
expressions. The structure of the strings inside this language it specifies is likewise defined by
context-free grammar. An alphabet, such as the set of tokens generated by a lexer or the subset of

54 Basics in Compiler Design

alphanumeric letters, is what defines a language. Terminals are the names given to the alphabetic
symbols. A context-free language defines many sets of strings recursively. A name, referred to as
a nonterminal, is used to identify each set. The set of non-terminals and the set of connections
are not connected. A nonterminal is used to indicate the language that the grammar describes.
This is considered to as the grammar's start sign. Many presentations explain the settings. Every
generation provides a selection of the alternative strings that are part of the set marked by a
nonterminal. A production takes this shape:

N�X1……..Xn

X1 through Xn are zero or more symbols, every one of which is either a terminating or a
nonterminal, where N is a nonterminal. The set marked by N comprises strings that were created
by concatenating phrases from the sets denoted by X1... Xn, according to the notation's intended
meaning. As with alphabet letters in regular expressions, a terminal here indicates a singleton set.
When there is little chance of a mistake, we shall equate a nonterminal with both the collection
of strings it designates.

A�a

Declares that the one-character string is present in the set represented by the nonterminal A.

A�aA

States that any strings created by adding an in front of a string selected from the set indicated by
A are included in the set denoted by A. Together, these two productions show that A includes all
non-empty sequences of as and is, thus, identical to the regular expression a+ (in the absence of
further productions). The two productions may be used to construct a grammar that is equal to
the regular expression a*:

B →

B → aB

The empty string is shown in the first production to be a component of set B. This grammar
should be compared to the definition of s*. Empty productions are those that have empty right-
hand sides. Sometimes, instead of leaving the right side empty, they are written with a. We
haven't yet specified any sets that regular expressions couldn't have just as easily used to
describe. However, it is observed that context-free grammars may describe considerably more
sophisticated languages and that the language {an bn | n ≥ 0} is not regular. However, the
grammar clearly explains it:

S →

S → aSb

For the “As” and “Bs” to appear equally often, the second production makes sure that they are
coupled symmetrically around the center of the string. Only one nonterminal per grammar was
utilized in the aforementioned instances. We must make it apparent which nonterminal is the
start symbol when several nonterminal are used. The start symbol is typically the nonterminal on
the left side of the first production (if nothing else is specified). For instance, the grammar

T → R

T → aTa

55 Basics in Compiler Design

R → b

R → bR

Has "T" as the start symbol and represents the collection of strings that begin with any number of
as are followed by any number of non-zero "bs," and then end with the same number of as they
began. The alternate symbol (|) from regular expressions is often used to divide the right-hand
sides when all the products of the same nonterminal are concatenated into a single rule. The
previous grammar would appear as follows in this notation:

T → R | aTa

R → b | bR

There are still four productions in the grammar as explain in Table 1, even though the arrow
symbol → is only used twice.

Table 1: Illustrated the Regular Expressions to Context-Free Grammars.

Sr. No. Form of Si Production of Ni

1. ε Ni→

2. a Ni→a

3. SjSk Ni→NjNk

4.
Sj|
Sk

Ni →Nj

Ni→Nk

5. Sj*
Ni>NjNj

Ni →

6. Sj+
Ni → Nj Ni

Ni → Nj

7. Sj? Ni → Nj

Ni →

Write the Context Free Grammar

As previously said, by employing a nonterminal for each subexpression in the regular expression
and one or two products for each nonterminal, a regular expression may be methodically recast

56 Basics in Compiler Design

as a context-free grammar. Making a grammar for a language is simple if we can conceive of a
method to represent it as a regular expression. But we also wish to characterize non-regular
languages using grammars. The types of arithmetic equations used in most programming
languages and on electronic calculators serve as an illustration. Grammar may be used to
characterize these phrases. Here are some examples of simple expression grammar:

Exp → Exp+Exp

Exp → Exp-Exp

Exp → Exp*Exp

Exp → Exp/Exp

Exp → num

Exp → (Exp)

It should be noted that regular expressions cannot "count" the number of unmatched opening
parentheses at a certain position in the text, hence they are unable to characterize matching
parenthesis. However, if the language did not have parenthesis, the following regular expression
might be used to describe it:

Num ((+|-|*|/)num)*

The ordinary description, however, considers the expression as a flat string rather than as having
structure, thus it is useless if you want operators to have varied precedence. Here is the syntax
for simple statements:

Stat → id:=Exp

Stat → Stat ;Stat

Stat → ifExpthenStat else Stat

Stat → ifExpthenStat

Context-free grammars may readily represent the majority of constructs from programming
languages. This is how most contemporary languages are constructed. One often begins by
categorizing the language's constructs into several syntactic groups when creating a grammar for
a computer language. A sub-language that expresses a specific idea is called a syntactic category.
Syntactic categories that are often used in programming languages include:

i. Expressions are used to express the calculation of values.

ii. Statements express actions that occur in a particular sequence.

iii. Declarations express properties of names used in other parts of the program.

Derivation

So far, while describing the collection of strings that a language generates, we have only relied
on common sense ideas of recursion. We may anticipate using the procedures to discover the set
of strings specified by a language since the productions are comparable to recursive set
equations. Though these techniques, which take into account the bounds of chains of sets,
theoretically extend to infinite sets, they are only applicable realistically to finite sets. Instead,
we define the term "derivation" below. This method also has the benefit of being closely

connected to derivation, as we shall see later. Derivation's fundamental principle is to see
productions as rewriting rules: Anytime we have a nonterminal, we may swap it out for the
production's right side whenever the nonterminal comes on the left. This may be repeated until
we are left with just terminals in a series of terminals and non
that result are a string written in the grammar's designated language. Formally, the
below define the derivation relation:

i. αNβ ⇒⇒⇒⇒ αγβ if there is a production N
ii. α ⇒⇒⇒⇒ α
iii. α ⇒⇒⇒⇒ γ if there is a β such that

Where α, β and γ possibly empty
terminals. It is a derivation step, according to the first rule, to use
anywhere in a series of grammatical symbols
itself and that the derivation connection is reflexive. The third rule explains transitivit
states that a series of derivations is a derivation in and of itself.

Syntax Trees and Ambiguity

A derivation may be represented as a tree: Every time we rewrite a nonterminal, we add the
symbols on the right-hand side of the expression that was
symbol of the grammar serves as the tree's root. The derived string is made up of the termination
that makes up the tree's leaves whenever they are read from left to right. It is shown as a child of
a nonterminal when it is rebuilt using an empty production. Despite its status as a leaf node
though too, this one is disregarded when reading the tree's string from its leaves. The sequence of
derivation is unimportant whenever writing such a syntax tree; if we deduce in the
any other manner, we still obtain the same tree. It
rewrite each nonterminal. The string produces gains structure thanks to the syntax tree. In the
subsequent stages of the compiler, we make use o
compilation: To create a syntax tree, we commence with a string. This procedure is known as
processing or syntax analysis. The selection of product
while building a syntax tree even if the order of derivation is irrelevant. Naturally, various
decisions would result in the derivation of distinct strings, but it is also possible for many syntax
trees to be constructed for a single string.
tree for the same string that was derived in Figure 2

Figure 1: Represented the Syntax Tree for the String “aabbbcc” using Grammar.

Basics in Compiler Design

connected to derivation, as we shall see later. Derivation's fundamental principle is to see
productions as rewriting rules: Anytime we have a nonterminal, we may swap it out for the

de whenever the nonterminal comes on the left. This may be repeated until
we are left with just terminals in a series of terminals and non-terminal symbols. The terminals
that result are a string written in the grammar's designated language. Formally, the
below define the derivation relation:

if there is a production N → γ

 if there is a β such that α ⇒⇒⇒⇒ β and β ⇒⇒⇒⇒ γ

 possibly empty sequences of grammar are symbols terminals and non
n step, according to the first rule, to use production as a rewrite rule

a series of grammatical symbols. The second claims that a sequence derives from
itself and that the derivation connection is reflexive. The third rule explains transitivit
states that a series of derivations is a derivation in and of itself.

Syntax Trees and Ambiguity

A derivation may be represented as a tree: Every time we rewrite a nonterminal, we add the
hand side of the expression that was utilised as its children. The start

symbol of the grammar serves as the tree's root. The derived string is made up of the termination
up the tree's leaves whenever they are read from left to right. It is shown as a child of

is rebuilt using an empty production. Despite its status as a leaf node
though too, this one is disregarded when reading the tree's string from its leaves. The sequence of
derivation is unimportant whenever writing such a syntax tree; if we deduce in the
any other manner, we still obtain the same tree. It is only important which product

The string produces gains structure thanks to the syntax tree. In the
subsequent stages of the compiler, we make use of this structure. We reverse the derivation for
compilation: To create a syntax tree, we commence with a string. This procedure is known as
processing or syntax analysis. The selection of products for that word or words is important

tree even if the order of derivation is irrelevant. Naturally, various
decisions would result in the derivation of distinct strings, but it is also possible for many syntax

onstructed for a single string. As an example, Figure 1, shows an alt
g that was derived in Figure 2.

: Represented the Syntax Tree for the String “aabbbcc” using Grammar.

57 Basics in Compiler Design

connected to derivation, as we shall see later. Derivation's fundamental principle is to see
productions as rewriting rules: Anytime we have a nonterminal, we may swap it out for the

de whenever the nonterminal comes on the left. This may be repeated until
terminal symbols. The terminals

that result are a string written in the grammar's designated language. Formally, the three rules

quences of grammar are symbols terminals and non-
production as a rewrite rule

. The second claims that a sequence derives from
itself and that the derivation connection is reflexive. The third rule explains transitivity, which

A derivation may be represented as a tree: Every time we rewrite a nonterminal, we add the
utilised as its children. The start

symbol of the grammar serves as the tree's root. The derived string is made up of the termination
up the tree's leaves whenever they are read from left to right. It is shown as a child of

is rebuilt using an empty production. Despite its status as a leaf node
though too, this one is disregarded when reading the tree's string from its leaves. The sequence of
derivation is unimportant whenever writing such a syntax tree; if we deduce in the left, right, or

only important which products you use to
The string produces gains structure thanks to the syntax tree. In the

f this structure. We reverse the derivation for
compilation: To create a syntax tree, we commence with a string. This procedure is known as

for that word or words is important
tree even if the order of derivation is irrelevant. Naturally, various

decisions would result in the derivation of distinct strings, but it is also possible for many syntax
shows an alternative syntax

: Represented the Syntax Tree for the String “aabbbcc” using Grammar.

Figure 2: Alternative syntax tree for the string aabbbcc Using Grammar.

We refer to a grammar as ambiguous when it allows for very many syntax trees for certain
strings. Ambiguity is not a concern if the only purpose of grammar is to describe collections of
strings. However, the structure must always be the same if we wish to
establish structure on strings. Being unambiguous in a grammar is thus a trait that is preferred.
The majority of the time, but not always, it is feasible to translate an ambiguous grammar into an
unambiguous vocabulary that produces the
used to determine which of the many different syntax trees

Rewriting Ambiguous Expression Grammars

If we have an ambiguous grammar

We can rewrite this to an unambiguous grammar that generates the correct structure. As this
depends on the associativity ⊕, we use different rewrite rules
left-associative, we make the grammar left
only of the operator symbol:

Now, the expression 2⊕3⊕4 can only be parsed as:

Basics in Compiler Design

: Alternative syntax tree for the string aabbbcc Using Grammar.

We refer to a grammar as ambiguous when it allows for very many syntax trees for certain
strings. Ambiguity is not a concern if the only purpose of grammar is to describe collections of
strings. However, the structure must always be the same if we wish to utilize
establish structure on strings. Being unambiguous in a grammar is thus a trait that is preferred.
The majority of the time, but not always, it is feasible to translate an ambiguous grammar into an
unambiguous vocabulary that produces the same collection of strings, or external rules may be
used to determine which of the many different syntax trees is the "correct one”.

Rewriting Ambiguous Expression Grammars

If we have an ambiguous grammar

E → E ⊕⊕⊕⊕ E

E → num

We can rewrite this to an unambiguous grammar that generates the correct structure. As this
, we use different rewrite rules for different associativity.

associative, we make the grammar left-recursive by having a recursive reference to the left

E → E ⊕⊕⊕⊕ E’

E → E’

E → num

4 can only be parsed as:

58 Basics in Compiler Design

: Alternative syntax tree for the string aabbbcc Using Grammar.

We refer to a grammar as ambiguous when it allows for very many syntax trees for certain
strings. Ambiguity is not a concern if the only purpose of grammar is to describe collections of

utilize grammar to
establish structure on strings. Being unambiguous in a grammar is thus a trait that is preferred.
The majority of the time, but not always, it is feasible to translate an ambiguous grammar into an

same collection of strings, or external rules may be

We can rewrite this to an unambiguous grammar that generates the correct structure. As this
for different associativity. If ⊕ is

recursive reference to the left

We handle right-associativity in a similar fashion: We make the offending production right
recursive:

Non-associative operators are handled by non

Note that the latter transformation changes the language that the grammar generates, as it makes
expressions of the form num⊕num
operator interacts with itself. This is easily extended to the case where several operators with the
same precedence and associativity interact with each

Operators with the same precedence must have the same associativity for this to work, as mixing
left-recursive and right-recursive
ambiguous.

Basics in Compiler Design

associativity in a similar fashion: We make the offending production right

E → E’⊕⊕⊕⊕ E

E → E’

E → num

associative operators are handled by non-recursive productions:

E → E’⊕⊕⊕⊕ E’

E → E’

E’ → num

Note that the latter transformation changes the language that the grammar generates, as it makes
num⊕num illegal. So far, we have handled only cases where an

operator interacts with itself. This is easily extended to the case where several operators with the
same precedence and associativity interact with each other, for example, + and -:

E → E +E’

E → E –E’

E → E’

E’→ num

erators with the same precedence must have the same associativity for this to work, as mixing
recursive productions for the same nonterminal makes the grammar

E → E +E’

E → E’⊕⊕⊕⊕ E

E → E’

59 Basics in Compiler Design

associativity in a similar fashion: We make the offending production right-

Note that the latter transformation changes the language that the grammar generates, as it makes
we have handled only cases where an

operator interacts with itself. This is easily extended to the case where several operators with the
:

erators with the same precedence must have the same associativity for this to work, as mixing
minal makes the grammar

60 Basics in Compiler Design

E’→ num

Exp → Exp+Exp2

Exp → Exp-Exp2

Exp → Exp2

Exp2 → Exp2*Exp3

Exp2 → Exp2/Exp3

Exp2 → Exp3

Exp3 → num

Exp3 → (Exp)

As an example, the grammar seems like an obvious generalization of the principles used above,
giving + and ⊕ the same precedence and different associativity. But not only is the grammar
ambiguous, but it also does not even accept the intended language. For example, the string num
+ num⊕num is not derivable by this grammar. In general, there is no obvious way to resolve
ambiguity in an expression like 1 + 2 ⊕ 3, where + is left-associative and ⊕ is right-associative
or vice-versa). Hence, most programming languages and most parser generators require
operators at the same precedence level to have identical associativity. We also need to handle
operators with different precedence’s. This is done by using a nonterminal for each precedence
level. The idea is that if an expression uses an operator of a certain precedence level, then its sub-
expressions cannot use operators of lower precedence unless these are inside parentheses. Hence,
the productions for a nonterminal corresponding to a particular precedence level refer only to
nonterminal that corresponds to the same or higher precedence levels, unless parentheses or
similar bracketing constructs disambiguate the use of these.

Syntax Analysis

Using a string of tokens generated by the lexer, the syntax analysis portion of a compiler will
create a syntax tree for something like the string by tracing its derivation first from grammar's
start symbol. Although guessing at derivations at random isn't very productive, it may be done
until the proper one is determined. However, other parsing techniques depend on "guessing" the
derivations. These, however, ensure that they will constantly make the correct estimate by
glancing at the string. They are referred to as predictive parsing techniques. Predictive parsers
are also sometimes known as deterministic top-down parsers since they always construct the
syntax tree from either the root to the leaves.

While simultaneously developing the syntax tree, other parsers scan the input text for portions
that match the right-hand sides of compositions and rewrite them to the left-hand nonterminal.
When the string has been recreated using an inverse derivation from the initial symbol, the
syntax tree is ultimately finished. Additionally, we want to guarantee that we always choose the
"correct" rewrites to achieve determinism parsing. These methods are also known as bottom-up
parsing techniques. In the sections that follow, we'll first examine predictive parsing and then
SLR interpreting, a bottom-up approach to parsing.

61 Basics in Compiler Design

CHAPTER 9

PREDICTIVE PARSING

Ghouse Basha M A

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- ghouse.basha@jainuniversity.ac.in

If we look at the left-derivation in the above figure, we see that, to the left of the rewritten
nonterminal, there are only terminals. These terminals correspond to a prefix of the string that is
being parsed. In a parsing situation, this prefix will be the part of the input that has already been
read. The job of the parser is now to choose the production by which the leftmost unexpanded
nonterminal should be rewritten. We aim to be able to make this choice deterministically based
on the next unmatched input symbol. If we look at the third line in above figure 2.3, we have
already read two as and if the input string is the one shown in the bottom line the next symbol is
a b. Since the right-hand side of the production:

T → aTc

Starts with an ‘a’, we obviously cannot use this. Hence, we can only rewrite ‘T’ using the
production

T → R

We are not quite as lucky in the next step and none of the productions for ‘R’ start with a
terminal symbol, so we cannot immediately choose a production based on this. As the grammar
is ambiguous, it should not be a surprise that we cannot always choose uniquely. If we instead
use unambiguous grammar and it can immediately choose the second production for ‘R’.

When all the ‘bs’ are read and we are at the following ‘c’, we choose the empty production for R
and match the remaining input with the rest of the derived string. If we can always choose a
unique product based on the next input symbol, we can do predictive parsing without
backtracking.

Nullable and First

In simple cases, like the above, all productions for a nonterminal start with distinct terminals
except at most one product that does not start with a terminal. We chose the latter whenever the
input symbol did not match any of the terminal symbols starting the other productions. We can
extend the method to work also for grammars where several productions start with nonterminal.
We just need to be able to select between them based on the input symbol. In other words, if the
strings these productions can derive begin with symbols from disjoint sets, we check if the input
symbol is in one of these sets and choose the corresponding production if it is. If not, and there is
an empty production, we choose this. Otherwise, we report a syntax error message. Hence, we
define the function FIRST, which gives a sequence of grammar symbols for example the right-
hand side of production returns the set of symbols with which strings derived from that sequence
can begin:

62 Basics in Compiler Design

Nullable(ε) = true

Nullable(a) = false

Nullable(αβ) = Nullable(α) ∧Nullable(β)

Nullable(N) = Nullable(α1) ∨...∨Nullable(αn),

 where the productions for N are

 N → α1, ... , N → αn

Where ‘a’ is a terminal, ‘N’ is a nonterminal, ‘α’ and ‘β’ are sequences of grammar symbols and
‘ε’ represents the empty sequence of grammar symbols. The equations are quite natural: Any
occurrence of a terminal on a right-hand side makes Nullable false for that right-hand side, but a
nonterminal is nullable if any product has a nullable right-hand side. Note that this is a recursive
definition since Nullable for a nonterminal is defined in terms of Nullable for its right-hand
sides, which may contain that same nonterminal. We can solve this in much the same way. We
have, however, now booleans instead of sets and several equations instead of one. Still, the
method is essentially the same: We have a set of Boolean equations:

X1 = F1(X1,...,Xn)

 .

 .

 .

Xn = Fn(X1,...,Xn)

At first, we suppose that all of X1, X2,..., Xn are untrue. The right-hand sides of the equations are
then computed in any order, and the computed value is subsequently updated to the variable on
the left-hand side. We keep going until every equation is met. We stipulated that the functions in
grammar as given in Table 1 below must be monotonic with respect to the subset. As a
consequence, we now demand that Boolean functions be monotonic with regard to truth: If we
add more true inputs, the conclusion will also be truer, meaning that it may remain constant or
shift from false to true but never from true to false.

Table 1: Represented that the Different Function in Grammar.

Right-hand side Initialization Iteration 1 Iteration 2 Iteration 3

R False False True True

aTc False False False False

ε False True True True

bR False False False False

Nonterminal

T False False True True

R False True True True

63 Basics in Compiler Design

If we look at grammar below, we get these equations for the nonterminal and right-hand sides:

Nullable (T) = Nullable(R) ∨Nullable (aTc)

Nullable(R) = Nullable (ε) ∨Nullable (bR)

Nullable(R) = Nullable(R)

Nullable (aTc) = Nullable (a) ∧Nullable (T) ∧Nullable (c)

Nullable (ε) = true

Nullable (bR) = Nullable (b) ∧Nullable (R)

In a fixed-point calculation, we initially assume that Nullable is false for all nonterminal and use
this as a basis for calculating Nullable for first the right-hand sides and then the nonterminal. We
repeat recalculating these until there is no change between the two iterations. As mentioned in
the below Algorithm, it shows the fixed-point iteration for the above equations. In each iteration,
we first evaluate the formulae for the right-hand sides and then use the results of this to evaluate
the nonterminal. The rightmost column shows the final result. We can calculate FIRST in a
similar fashion to Nullable:

FIRST (ε) = φ

FIRST (a) = {a}

FIRST (α β) = ���	
�(
) ∪ ��	
�(�) �� ��������(�)
��	
�(
)�� ��� ��������(�) �

FIRST (N) = FIRST (α1) ∪∪∪∪...∪∪∪∪ FIRST (αn)

Where the productions for N are

N → α1, ..., N → αn

Table 1: Represented theFixed-point iteration for the calculation of FIRST.

Right-hand side Initialization Iteration 1 Iteration 2 Iteration 3

R Φ Φ true true

aTc Φ {a} {a} {a}

ε Φ Φ Φ Φ

bR Φ {b} {b} {b}

Nonterminal

T Φ {a} {a,b} {a,b}

R Φ {b} {b} {b}

64 Basics in Compiler Design

Where ‘a’ is a terminal, ‘N’ is a nonterminal, α and β are sequences of grammar symbols and ‘ε’
represent the empty sequence of grammar symbols.The only nontrivial equation is that for αβ.
Anything that can start a string derivable from α can also start a string derivable from αβ.
However, if α is nullable, a derivation may proceed as αβ ⇒ β ⇒ ···, so anything in FIRST (β) is
also in FIRST (αβ). The setequations are solved in the same general way as the Boolean
equations for Nullable, but since we work with sets, we initially assume every set to be empty.
According to above Table 1, we get the following equations:

FIRST (T) = FIRST(R) ∪∪∪∪ FIRST (aTc)

FIRST(R) = FIRST (ε) ∪∪∪∪ FIRST (bR)

FIRST(R) = FIRST(R)

FIRST (aTc) = FIRST (a)

FIRST (ε) = Φ

FIRST (bR) = FIRST (b)

When working with grammars by hand, it is usually quite easy to see for most productions if
they are nullable and what their FIRST sets are. For example, a production is not nullable if its
right-hand side has a terminal anywhere, and if the right-hand side starts with a terminal, the
FIRST set consists of only that symbol. Sometimes, however, it is necessary to go through the
motions of solving the equations. When working by hand, it is often useful to simplify the
equations before the fixed-point iteration, for example, reduce FIRST (aTc) to {a}.

Predictive Parsing Revisited

We are now ready to construct predictive parsers for a wider class of grammars: If the right-hand
sides of the productions for a nonterminal have disjoint FIRST sets, we can use the next input
symbol to choose among the productions. The empty production if any on any symbol that was
not in the FIRST sets of the non-empty productions for the same nonterminal. We can extend
this, so we in case of no matching FIRST sets can select a product if it is Nullable. The idea is
that a Nullable production can derive the empty string, so the input symbol need not be read by
the production itself. But if there are several Nullable productions, we have no way of choosing
between them. Hence, we do not allow more than one production for a nonterminal to be
Nullable. However, this is not true with the method as stated above: We can get unique choice of
production even for some ambiguous grammars, including grammar. The syntax analysis will in
this case just choose one of several possible syntax trees for a given input string. In many cases,
we do not consider such behaviour acceptable. We would very much like our parser construction
method to tell us if we by mistake write an ambiguous grammar.

T → aTb

Even worse, the rules for predictive parsing as presented here might even for some unambiguous
grammars give deterministic choice of production, but reject strings that belong to the language
described by the grammar. If we, for example, change the second production in grammar 3.9 this
will not change the choices made by the predictive parser for nonterminal R. However, always
choosing the last production for R on a b will lead to erroneous rejection of many strings,
including ab. This kind of behaviour is unacceptable. We should, at least, get a warning that this
might occur, so we can rewrite the grammar or choose another syntax analysis method. Hence,
we add to our construction of predictive parsers a test that will reject all ambiguous grammars

65 Basics in Compiler Design

and those unambiguous grammars that can cause the parser to fail erroneously. We have so far
simply chosen a nullable production if and only if no other choice is possible. This is, however,
not always the right thing to do, so we must change the rule to say that we choose a production N
→ α on symbol c if one of the two conditions below is satisfied:

i. c ∈ FIRST(α)

ii. “α” is nullable and the sequence “Nc” can occur somewhere in a derivation starting
from the start symbol of the grammar.

The first rule is self-evident; however, the second needs some explanation: It looks like a
nullable production may be a viable option regardless of the following input symbol if "α" is
nullable since we can build a syntax tree based on it without reading any input. When there are
both character data and non-nullable manufactures for the same nonterminal, this would not only
provide several acceptable production options, but it is also not necessarily wise to choose the
nullable production: We always update the leftmost nonterminal "N" in the current succession of
grammar symbols since predictive parsing creates a leftmost derivation. The set of grammar
symbols that follow 'N' in the present sequence must thus match any input that 'N' does not
match. If it's not feasible, we chose poorly when deriving "N" if it's not possible.

In particular, the next input symbol, "c," should start the reasoning of the sequence that follows
"N" if "N" derives from the empty sequence. Therefore, the series of symbols that come after
"N" should at the very least have a derivation that starts with "c." The sequence "Nc" should be
seen throughout the derivation if we derive the symbols following "N" before "N" using a
separate derivation order. In the absence of doing so, it is impossible to rewrite "N" to the empty
sequence without also running into trouble when rewriting the entire sequence. We can see that if
the alternative composition order becomes stuck, so will the leftmost derivation order since the
derivation order does not affect the syntax tree. As a result, we can only rewrite "N" to the empty
sequence if the following input symbol "c" may be used in a valid derivation with "N." We'll
examine how to do this in the next section.

Keep in mind that if c ∈ FIRST (α), a nullable production N → α may be picked with validity.
We may still have instances where both nullable and non-nullable products are viable options
notwithstanding the limitation on selecting nullable productions. This applies to all ambiguous
grammars that are not identified as being ambiguous by the old technique, where we only choose
nullable products if there are no other viable options, as well as the example above with the
changed grammar since Rb may occur in a derivation.

A Larger Example

The above examples of calculating FIRST and FOLLOW are rather small, so we show a
somewhat more substantial example. The following grammar describes even-length strings of
“as” and “bs” that are not of the form “ww” where w is any string of “as” and “bs”. In other
words, the strings cannot consist of two identical halves.

N → A B

N → B A

A → a

A → C A C

66 Basics in Compiler Design

B → b

B → C B C

C → a

C → b

The idea is that if the string does not consist of two identical halves, there must be a point in the
first string that has an “a” where the equivalent point in the second string has “a” “b” or vice-
versa. The grammar states that one of these is the case. We first note that there is empty
production in the grammar, so no production can be Nullable. So we immediately set up the
equations for FIRST for each nonterminal and right-hand side:

FIRST (N) = FIRST (A B) ∪∪∪∪ FIRST (B A)

FIRST (A) = FIRST (a) ∪∪∪∪ FIRST (C A C)

FIRST (B) = FIRST (b) ∪∪∪∪ FIRST (C B C)

FIRST (C) = FIRST (a) ∪∪∪∪ FIRST (b)

FIRST (A B) = FIRST (A)

FIRST (B A) = FIRST (B)

FIRST (a) = {a}

FIRST (C A C) = FIRST (C)

FIRST (b) = {b}

FIRST (C B C) = FIRST (C)

Which we solve by fixed-point iteration as present in Table 2. We initially set the FIRST sets for
the nonterminal to the empty sets, calculate the FIRST sets for right-hand sides and then
nonterminal, repeating the last two steps until no changes occur:

Table 2: Illustrate the fixed-point iteration as present.

Right-hand side Iteration 1 Iteration 2 Iteration 3

AB Φ {a} {a, b}

BA Φ {b} {a, b}

a {a} {a} {a}

CAC Φ {a, b} {a, b}

b {b} {b} {b}

CBC Φ {a, b} {a, b}

67 Basics in Compiler Design

Nonterminal

N Φ {a,b} {a,b}

A {a} {a, b} {a, b}

B {b} {a, b} {a, b}

C {a, b} {a, b} {a, b}

The next iteration does not add anything, so the fixedpoint is reached. We now add the
production N’�N$ and set up the constraints for calculating FOLLOW sets as display in Table
3:

Table: 3: Represented that the Production and its Constraints.

Production Constraints

N’ → N$ {$}⊆FOLLOW(N)

N → A B
FRST(B)⊆FOLLOW(A),

FOLLOW(N)⊆FOLLOW(B)

N → B A
FIRST(A)⊆FOLLOW(B),

FOLLOW(N)⊆FOLLOW(A)

A → a

A → C A C
FIRST(A)⊆FOLLOW(C),FIRST(C)⊆FOLLOW(A),

FOLLOW(A)⊆FOLLOW(C)

B → b

B → C B C
FIRST(B)⊆FOLLOW(C),
FIRST(C)⊆FOLLOW(B),

FOLLOW(B)⊆FOLLOW(C)

C → a

C → b

We first use the constraint {$} ⊆ FOLLOW (N) and constraints of the form FIRST(···) ⊆
FOLLOW(···) to get the initial sets:

FOLLOW(N) ⊆⊆⊆⊆ {$}

FOLLOW(A) ⊆⊆⊆⊆ {a, b}

FOLLOW(B) ⊆⊆⊆⊆ {a, b}

FOLLOW(C) ⊆⊆⊆⊆ {a, b}

68 Basics in Compiler Design

And then use the constraints of the form FOLLOW (···) ⊆FOLLOW(···). If we do this in top-
down order, we get after one iteration:

FOLLOW(N) ⊆⊆⊆⊆ {$}

FOLLOW(A) ⊆⊆⊆⊆ {a, b, $}

FOLLOW(B) ⊆⊆⊆⊆ {a, b, $}

FOLLOW(C) ⊆⊆⊆⊆ {a, b, $}

Another iteration does not add anything, so the final result is:

FOLLOW(N) = {$}

FOLLOW(A) = {a, b, $}

FOLLOW(B) = {a, b, $}

FOLLOW(C) = {a, b, $}

LL(1) parsing We have, in the previous sections, looked at how we can choose productions
based on FIRST and FOLLOW sets, that is using the rule that we choose a production N → α
on input symbol c if:

c ∈∈∈∈ FIRST(α),

Nullable(α) and c ∈∈∈∈ FOLLOW(N).

If we can always choose a production uniquely by using these rules, this is called LL(1) parsing-
the first L indicates the reading direction (left-to-right), the second L indicates the derivation
order (left) and the 1 indicates that there is one symbol look ahead. A grammar that can be
parsed using LL(1) parsing is called an LL(1) grammar. In the rest of this section, we shall see
how we can implement LL(1) parsers as programs. We look at two implementation methods:
Recursive descent, where grammar structure is directly translated into the structure of a program,
and a table-based approach that encodes the decision process in a table.

Recursive Descent

As the name indicates, recursive descent uses recursive functions to implement predictive
parsing. The central idea is that each nonterminal in the grammar is implemented by a function
in the program. Each such function looks at the next input symbol to choose one of the
productions for the nonterminal. The right-hand side of the chosen product is then used for
parsing in the following way:

A terminal on the right-hand side is matched against the next input symbol. If they match, we
move on to the following input symbol and the next symbol on the right-hand side, otherwise, an
error is reported. A nonterminal on the right-hand side is handled by calling the corresponding
function and, after this call returns, continuing with the next symbol on the right-hand side.
When there are no more symbols on the right-hand side, the function returns. As an example,
figure 3.16 shows pseudo-code for a recursive descent parser for grammar. We have constructed
this program by the following process: We have first added a production

T’ → T$

and calculated FIRST and FOLLOW for all productions.

69 Basics in Compiler Design

T’ has only one production, so the choice is trivial. However, we have added a check on the next
input symbol anyway, so we can report an error if it is not in FIRST(T’). This is shown in the
function parseT’. For the parseT function, we look at the productions for T. As FIRST(R) = {b},
the production

T → R

Is chosen on the symbol b. Since R is also Nullable, we must choose this production also on
symbols in FOLLOW(T), i.e., c or $. FIRST(aTc) = {a}, so we select T → aTc on an a. On all
other symbols, we report an error.

function parseT’() =

 if next = ’a’ or next = ’b’ or next = ’$’ then

parseT() ; match(’$’)

 else reportError()

function parseT() =

 if next = ’b’ or next = ’c’ or next = ’$’ then

parseR()

 else if next = ’a’ then

 match(’a’) ;parseT() ; match(’c’)

 else reportError()

function parseR() =

 if next = ’c’ or next = ’$’ then

 (* do nothing *)

 else if next = ’b’ then

 match(’b’) ;parseR()

 else reportError()

The above code is represented that the “Recursive Descent Parser for Grammar”. For parseR, we
must choose the empty production on symbols in FOLLOW(R)(c or $). The production R →
bR is chosen on input b. Again, all other symbols produce an error. The function match takes as
argument a symbol, which it tests for equality with the next input symbol. If they are equal, the
following symbol is read into the variable next. We assume the next is initialised to the first input
symbol before ‘parseT’ is called. The above program only checks if the input is valid. It can
easily be extended to construct a syntax tree by letting the parse functions return the sub-trees for
the parts of the input that they parse.

Table-driven LL(1) Parsing

In table-driven LL(1) parsing, we encode the selection of productions into a table instead of in
the program text. A simple non-recursive program uses this table and a stack to perform the
parsing. The table is cross-indexed by nonterminal and terminal and contains for each such pair

70 Basics in Compiler Design

the production (if any) that is chosen for that nonterminal when that terminal is the next input
symbol. This decision is made just as for recursive descent parsing: The production N → α is in
the table at (N,a) if a is in FIRST(α) or if both Nullable(α) and a are in FOLLOW(N).

Table 4: Represented the Table-Driven LL(1) Parsing.

 a b c $

T’ T’
→T$ T’

→T$ N/A T’
→T$

T T→ aTc T→ R T→ R T→ R

R R→bR R→ R→

It uses a stack, which at any time contains the part of the current derivation that has not yet been
matched to the input. When this eventually becomes empty, the parse is finished. If the stack is
non-empty, and the top of the stack contains a terminal, that terminal is matched against the input
and popped from the stack. Otherwise, the top of the stack must be a nonterminal, which we
cross-index in the table with the next input symbol. If the tableentry is empty, we report an error.
If not, we pop the nonterminal from the stack and replace this with the right-hand side of the
production in the table entry. The list of symbols on the right-hand side is pushed such that the
first of these will be at the top of the stack. The input and stack at each step during parsing of the
string “aabbbcc$” using the above Table 4. The top of the stack is to the left. It, too, can be
extended to build a syntax tree. This can be done by letting each nonterminal on the stack point
to its node in the partially built syntax tree. When the nonterminal is replaced by one of its right-
hand sides, nodes for the symbols on the right-hand side are added as children to the node.

Conflicts

When a symbol allows several choices of production for nonterminal N we say that there is a
conflict on that symbol for that nonterminal. Conflicts may be caused by ambiguous grammars
indeed all ambiguous grammars will cause conflicts but there are also unambiguous grammars
that cause conflicts. An example of this is the unambiguous expression grammar. We will in the
next section see how we can rewrite this grammar to avoid conflicts, but it must be noted that
this is not always possible: There are languages for which there exist unambiguous context-free
grammars but where no grammar for the language generates a conflict-free LL(1) table. Such
languages are said to be non-LL(1). It is, however, important to note the difference between a
non-LL(1) language and a non-LL(1) grammar: A language may well be LL(1) even though the
grammar used to describe it is not.

stack := empty ; push(T’,stack)

 while stack <> empty do

 if top(stack) is a terminal then

 match(top(stack)) ; pop(stack)

 else if table(top(stack),next) = empty then

71 Basics in Compiler Design

reportError

else

rhs := rightHandSide(table(top(stack),next)) ;

 pop(stack) ;

pushList(rhs,stack)

The above program are represented the Program for table-driven LL(1) parsing to note the
difference between a non-LL(1) language and a non-LL(1) grammar: A language may well be
LL(1) even though the grammar used to describe it is not.

input stack

aabbbcc$ T’

aabbbcc$ T$

aabbbcc$ aTc$

abbbcc$ Tc$

abbbcc$ aTcc$

bbbcc$ Tcc$

bbbcc$ Rcc$

bbbcc$ bRcc$

bbcc$ Rcc$

bbcc$ bRcc$

bcc$ Rcc$

bcc$ bRcc$

cc$ Rcc$

72 Basics in Compiler Design

cc$ cc$

c$ c$

$ $

Rewriting a Grammar for LL(1) Parsing

In this section, we will look at methods for rewriting grammars such that they are more palatable
for LL(1) parsing. In particular, we will look at the elimination of left recursion and left

factorization. It must, however, be noted that not all grammars can be rewritten to allow LL(1)
parsing. In these cases, stronger parsing techniques must be used.

Eliminating left-recursion

As mentioned above, the unambiguous expression grammar is not LL(1). The reason is that all
productions in Exp and Exp2 have the same FIRST sets. Overlap like this will always happen
when there are left-recursive productions in the grammar, as the FIRST set of a left-recursive
production will include the FIRST set of the nonterminal itself and hence be a superset of the
FIRST sets of all the other productions for that nonterminal. To solve this problem, we must
avoid leftrecursion in the grammar. We start by looking at direct leftrecursion. When we have a
nonterminal with some left-recursive and some productions that are not, that is:

N → N α1

.

.

.

N → N αm

N → β1

.

.

.

N → βn

Where the βi do not start with N, we observe that this generates all sequences that start with one
of the βi and continue with any number (including 0) of the αj. In other words, the grammar is
equivalent to the regular expression(β1 |...|βn)(α1 |...|αm)*.

Exp → Exp2 Exp∗∗∗∗

Exp∗∗∗∗ → + Exp2 Exp∗∗∗∗

Exp∗∗∗∗ → - Exp2 Exp∗∗∗∗

Exp∗∗∗∗ →

73 Basics in Compiler Design

Exp2 → Exp3 Exp2∗∗∗∗

Exp2∗∗∗∗ → * Exp3 Exp2∗∗∗∗

Exp2∗∗∗∗ → / Exp3 Exp2∗∗∗∗

Exp2∗∗∗∗ →

Exp3 → num

Exp3 → (Exp)

We saw in the below program which is denoted that the Removing left-recursion from grammar.
A method for converting regular expressions into context-free grammars can generate the same
set of strings. By following this procedure and simplifying a bit afterwards, we get this
equivalent grammar:

N → β1N*

.

.

N → βnN∗∗∗∗

N∗∗∗∗ → α1 N∗∗∗∗

.

.

N∗∗∗∗ → αm N∗∗∗∗

N∗∗∗∗ →

Where N∗ is a new nonterminal that generates a sequence of αs.Note that, since the βi do not start
with N, there is no direct left-recursion in the first n productions. Since N∗ is a new nonterminal,
the αj cannot start with this, so the last m productions can’t have direct left-recursion either.
There may, however, still be indirect left-recursion if any of the αj are nullable or the βi can
derive something starting with N. We will briefly look at indirect left-recursion below. While we
have eliminated direct left-recursion, we have also changed the syntax trees that are built from
the strings that are parsed. Hence, after parsing, the syntax tree must be re-structured to obtain
the structure that the original grammar describes.

Indirect Left Recursion

The transformation is only applicable in the simple case where there is no indirect left-recursion.
Indirect left-recursion can have several faces:

i. There are mutually left-recursive productions:

N1 → N2α1

N2 → N3α2

 .

 .

 .

74 Basics in Compiler Design

Nk-1 → Nk αk-1

Nk → N1αk

ii. There is a production N → αNβ.
Where α is Nullable.

Any combination of the two. More precisely, a grammar is left-recursive if there is a non-empty
derivation sequence N ⇒⇒⇒⇒ Nα, i.e., if a nonterminal derives a sequence of grammar symbols that
start by that same nonterminal. If there is indirect left-recursion, we must first rewrite the
grammar to make the left-recursion direct and then use the transformation above. Rewriting a
grammar to turn indirect left-recursion into direct left-recursion can be done systematically, but
the process is a bit complicated. We will not go into this here, as in practice most cases of left-
recursion are direct left-recursion.

Left Factorization

If two productions for the same nonterminal begin with the same sequence of symbols, they have
overlapping FIRST sets. As an example, in the below grammar the two productions for if have
overlapping prefixes.

Stat → id:=Exp

Stat → Stat ;Stat

Stat → ifExpthenStat else Stat

Stat → ifExpthenStat

We rewrite this in such a way that the overlapping productions are made into a single product
that contains the common prefix of the productions and uses a new auxiliary nonterminal for the
different suffixes see the below grammar:

Stat → id:=Exp

Stat → if Exp then Stat Elsepart

Elsepart → else Stat

Elsepart →

In this grammar we can uniquely choose one of the productions for Stat based on one input
token. For most grammars, combining productions with common prefix will solve the problem.
However, in this particular example, the grammar still is not LL(1): We cannot uniquely choose
a production for the auxiliary nonterminal Elsepart, since else is in FOLLOW(Elsepart) as well
as in the FIRST set of the first production for Elsepart. This should not be a surprise to us, since,
after all, the grammar is ambiguous and ambiguous grammars cannot be LL(1). The equivalent
unambiguous grammar (grammar 3.13) cannot easily be rewritten to a form suitable for LL(1),
so in practice grammar 3.21 is used anyway and the conflict is handled by choosing the non-
empty production for Elsepart whenever the symbol else is encountered, as this gives the desired
behavior of letting an else match the nearest if. We can achieve this by removing the empty
production from the table entry for Elsepart/else, so only the non-empty production Elsepart →
else Stat remains. Very few LL(1) conflicts caused by ambiguity can be removed in this way,
however, without also changing the language recognized by the grammar. For example, operator
precedence ambiguity cannot be resolved by deleting conflicting entries in the LL(1).

75 Basics in Compiler Design

Construction of LL(1) Parsers Summarized

i. Eliminate ambiguity

ii. 2. Eliminate left-recursion

iii. 3. Perform left factorisation where required

iv. 4. Add an extra start production S

v. 0 → S$ to the grammar.

vi. 5. Calculate FIRST for every production and FOLLOW for every nonterminal.

vii. 6. For nonterminal N and input symbol c, choose production N → α when:

• c ∈ FIRST(α),

• Nullable(α) and c ∈ FOLLOW(N)

This choice is encoded either in a table or a recursive-descent program.

SLR parsing

The majority of grammars need significant rewriting to be put into a form that allows for a
unique choice of production, which is a drawback of LL(1) parsing. There are still many
grammars that cannot be mechanically converted into LL(1) grammars, even though this
rewriting can be, to a significant part, automated. A family of bottom-up parsing techniques
called LR parsers accepts a significantly broader range of grammars than LL(1) parsing, but not
all grammars. The fundamental benefit of LR parsing is that it requires less rewriting than LL(1)
parsing to bring a language into an acceptable form for LR parsing. In addition, LR parsers
permit external specification of operator precedence’s for resolving ambiguity rather than
requiring that the grammars themselves be unambiguous. We'll examine SLR parsing, a
straightforward variation of LRparsing. SLR is an acronym for "Simple," "Left," and "Right."
The words "Left" and "Right" denote that the input is read from left to right and that the
rightmost derivation is produced, respectively. LR parsers are bottom-up, table-driven parsers
that use two different types of "actions" utilizing an input stream and a stack:

There will at some point during the parsing be no suitable actions and the parser will halt with an
error message if the input text does not follow the grammatical rules. If not, the parser will read
everything in and just leave one element of the grammar's start symbol on the stack. Shift-reduce
parsers are another name for LR parsers. Our goal is to limit the option of action to the next input
symbol and the symbol at the top of the stack, much as with LL(1). This is accomplished by
building a DFA. The DFA reads the stack's contents conceptually, beginning at the bottom. The
right action is a reduction by a production defined by the next input symbol and a mark on the
accepting DFA state if the DFA is accepting when it reaches the top of the stack. The right
response is a shift on one of the symbols for which there is an outgoing edge from the DFA state
if the DFA is not accepting when it reaches the top of the stack. As a result, the DFA scans the
stack from bottom to top at each step, and the next input symbol and the DFA state are used to
decide what to do.

However, it is not particularly effective to have the DFA read the whole stack with each
operation, so we instead save the DFA's reading status with each stack member. By doing this,
we may start from the top of the stack instead of the bottom, beginning the DFA in its stored

state rather than its original state.
take the state off the top of the stack, identify the next DFA state by following the transition
suggested by the next input symbol, and then store both the symbol
stack. If the DFA showed a decrease, we remove the s
the stack. The DFA state is then read from the new stack top.

We store both the nonterminal and the state a
should have a transition on the nonterminal that i
of these improvements, the DFA only has to check a terminal or nonterminal once when it is
placed into the stack. It just needs to read the DFA state, which is kept at the top of the stack, at
all other times. Once a transition has been performed on an input symbol or nonterminal, we
don't need to keep it since no further transitions will rely on it in the future; the stored DFA state
suffices. As a result, we may allow each stack element to just include the D
the symbol plus the state. Even while the DFA is still used, it now only has to consider the next
input symbol at a shift action or nonterminal and the current state stored at the top of the s
decide what to do next. To discover
with a symbol either terminal or nonterminal

shift n: Read the next input symbol and push state n on the stack.

go n: Push state n on the stack.

reduce p: Reduce with

accept: Parsing has

error: A syntax error has been detected.

Keep in mind that the top of the stack is always
symbol are cross-indexed, shift and reduce operations are employed. When a state is cross
indexed with a nonterminal, go actions are employed. Since the destination state of a go action
relies on the state at the top of the stack after the right
popped off, we cannot mix the go activities with the reduce
state discovered after the stack is popped immediately follows a decrease in the current
example SLR table is shown in Figure 1

Figure 1

Basics in Compiler Design

rather than its original state. When the DFA indicates a shift, the next step is s
take the state off the top of the stack, identify the next DFA state by following the transition
suggested by the next input symbol, and then store both the symbol and the new state on the

If the DFA showed a decrease, we remove the symbols for the production's right side from
the stack. The DFA state is then read from the new stack top.

We store both the nonterminal and the state after the transition on the stack since this DFA state
should have a transition on the nonterminal that is the left-hand side of the production. Because
of these improvements, the DFA only has to check a terminal or nonterminal once when it is
placed into the stack. It just needs to read the DFA state, which is kept at the top of the stack, at

. Once a transition has been performed on an input symbol or nonterminal, we
don't need to keep it since no further transitions will rely on it in the future; the stored DFA state
suffices. As a result, we may allow each stack element to just include the DFA state rather than
the symbol plus the state. Even while the DFA is still used, it now only has to consider the next
input symbol at a shift action or nonterminal and the current state stored at the top of the s

o discover one of the following actions, we cross-index a DFA state
with a symbol either terminal or nonterminal and express the DFA as a table.

next input symbol and push state n on the stack.

go n: Push state n on the stack.

reduce p: Reduce with the production numbered p.

accept: Parsing has been completed successfully.

error: A syntax error has been detected.

Keep in mind that the top of the stack is always in its current state. When a state and a terminal
indexed, shift and reduce operations are employed. When a state is cross

indexed with a nonterminal, go actions are employed. Since the destination state of a go action
top of the stack after the right-hand side of the reduced production is

popped off, we cannot mix the go activities with the reduced actions in the table. A go in the
state discovered after the stack is popped immediately follows a decrease in the current

n in Figure 1.

Figure 1: Represented the SLR Table for Grammar.

76 Basics in Compiler Design

When the DFA indicates a shift, the next step is simple: we just
take the state off the top of the stack, identify the next DFA state by following the transition

and the new state on the
ymbols for the production's right side from

the transition on the stack since this DFA state
hand side of the production. Because

of these improvements, the DFA only has to check a terminal or nonterminal once when it is
placed into the stack. It just needs to read the DFA state, which is kept at the top of the stack, at

. Once a transition has been performed on an input symbol or nonterminal, we
don't need to keep it since no further transitions will rely on it in the future; the stored DFA state

FA state rather than
the symbol plus the state. Even while the DFA is still used, it now only has to consider the next
input symbol at a shift action or nonterminal and the current state stored at the top of the stack to

ndex a DFA state

next input symbol and push state n on the stack.

current state. When a state and a terminal
indexed, shift and reduce operations are employed. When a state is cross-

indexed with a nonterminal, go actions are employed. Since the destination state of a go action
hand side of the reduced production is

actions in the table. A go in the
state discovered after the stack is popped immediately follows a decrease in the current state.An

the SLR Table for Grammar.

The actions have been abbreviated to their first letters and
The algorithm for parsing a string usin

Figure 2: Represented the Algorithm for SLR Parsing.

The shown algorithm just determines if a string is in the language generated by the grammar. It
can, however, easily be extended to build a syntax
the state number a portion of a syntax tree.

When performing a reduced action, a new (partial) syntax tree is built by using the nonterminal
from the reduced production as root and the syntax trees stored at the popped
as children.

The new tree and the new state are then pushed
example of parsing the string aabbbc
the “stack” column represent the stack contents with the sta
stack top to the right.

At each step, we look at the next input symbol
and the state at the top of the stack
up the pair of input symbol and state in the table and find an action, which is shown in the action
column. When the shown action is a reduce action, we also show the reduction u
parentheses and after a semicolon also the go action that is performe

Basics in Compiler Design

The actions have been abbreviated to their first letters and the error is shown as a blank entry.
The algorithm for parsing a string using the table is shown in Figure 2.

: Represented the Algorithm for SLR Parsing.

The shown algorithm just determines if a string is in the language generated by the grammar. It
can, however, easily be extended to build a syntax tree: Each stack element holds in

a portion of a syntax tree.

action, a new (partial) syntax tree is built by using the nonterminal
from the reduced production as root and the syntax trees stored at the popped-off stack elements

the new state are then pushed as a single stack element. Figure 3
example of parsing the string aabbbcc using the table in Figure 4. The sequences of numbers in
the “stack” column represent the stack contents with the stack bottom shown to the left and the

look at the next input symbol at the left end of the string in the input column
of the stack at the right end of the sequence in the stack column

up the pair of input symbol and state in the table and find an action, which is shown in the action
column. When the shown action is a reduce action, we also show the reduction u

and after a semicolon also the go action that is performed after the reduction.

77 Basics in Compiler Design

error is shown as a blank entry.

The shown algorithm just determines if a string is in the language generated by the grammar. It
tree: Each stack element holds in addition to

action, a new (partial) syntax tree is built by using the nonterminal
off stack elements

ngle stack element. Figure 3 shows an
. The sequences of numbers in

ck bottom shown to the left and the

the string in the input column
he sequence in the stack column. We look

up the pair of input symbol and state in the table and find an action, which is shown in the action
column. When the shown action is a reduce action, we also show the reduction used in

d after the reduction.

Figur

Figure 4: Represented the Example Grammar for SLR

Figure 5: Represented the NFAs fo

The next step is to make an NFA for each
terminals and nonterminals as alphabet symbols. The accepting state of each NFA is labelled
with the number of the corresponding production. T

Basics in Compiler Design

Figure 3: Represented the Example SLR parsing.

: Represented the Example Grammar for SLR-table Construction.

: Represented the NFAs for the productions in grammar

The next step is to make an NFA for each production. This is done exactly like treating both
as alphabet symbols. The accepting state of each NFA is labelled

with the number of the corresponding production. The result is shown in Figure 5

78 Basics in Compiler Design

: Represented the Example SLR parsing.

table Construction.

r the productions in grammar.

production. This is done exactly like treating both
as alphabet symbols. The accepting state of each NFA is labelled

he result is shown in Figure 5. Note that we

have used the optimized construction for
make transitions both on terminals and nonterminal. Transitions by terminal correspond to shift
actions and transitions on nonterminal correspond to go actions. A go action happ
reduction, whereby some elements of the stack
production are replaced by a nonterminal
However, before we can reduce on a nonterminal, the symbols that form the
be on the stack. So we prepare for a later transition on a nonterminal by allowing transitions that,
eventually, will leave the symbols forming
we can reduce these to the nonterminal and then make a transition in this.

Figure

We thus permit transitions on the symbol sequences on the right
whenever a transition by a nonterminal is feasible. Epsilon transitions are added to the NFAs in
Figure 3.4 to accomplish this. We add epsilon transitions from s to the starting states of all the
NFAs for productions with "N" on the left
states to state t. Epsilon transitions are noted in a separate table in Figure 3.5 rather than as
arrows in Figure 3.4 since doing so would result in a considerably more crowded image.
However, this is purely for display p
of the DFA, the transitions have the same significance.

The NFAs in Figure 7 are joined by these epsilontransitions to produce a single, combined NFA.
This NFA contains an accepted state for each
state "A," which serves as the starting state of the NFA for the additional start production. This
NFA must now be transformed into a DFA using the subset. We create a table instead of
displaying the resultant DFA visually, with transitions on terminals being represented as shift
actions and transitions on non-terminals being represented as go actions.

Figure 7

Basics in Compiler Design

imized construction for ε, which is the empty production. The NFAs in Figure 6
make transitions both on terminals and nonterminal. Transitions by terminal correspond to shift
actions and transitions on nonterminal correspond to go actions. A go action happ

eby some elements of the stack corresponding to the right
production are replaced by a nonterminal corresponding to the left-hand side of that production
However, before we can reduce on a nonterminal, the symbols that form the right
be on the stack. So we prepare for a later transition on a nonterminal by allowing transitions that,
eventually, will leave the symbols forming a right-hand side of the production on the stack, so
we can reduce these to the nonterminal and then make a transition in this.

Figure 6: Represented the Epsilontransitions.

We thus permit transitions on the symbol sequences on the right-hand sides of the productions
whenever a transition by a nonterminal is feasible. Epsilon transitions are added to the NFAs in
Figure 3.4 to accomplish this. We add epsilon transitions from s to the starting states of all the
NFAs for productions with "N" on the left-hand side whenever a nonterminal N transitions from
states to state t. Epsilon transitions are noted in a separate table in Figure 3.5 rather than as
arrows in Figure 3.4 since doing so would result in a considerably more crowded image.
However, this is purely for display purposes: Whether they are shown in the table or the graphic
of the DFA, the transitions have the same significance.

are joined by these epsilontransitions to produce a single, combined NFA.
This NFA contains an accepted state for each production in the grammar as well as the beginning
state "A," which serves as the starting state of the NFA for the additional start production. This
NFA must now be transformed into a DFA using the subset. We create a table instead of

tant DFA visually, with transitions on terminals being represented as shift
terminals being represented as go actions.

Figure 7: Represented the SLR Table for Grammar.

79 Basics in Compiler Design

The NFAs in Figure 6
make transitions both on terminals and nonterminal. Transitions by terminal correspond to shift
actions and transitions on nonterminal correspond to go actions. A go action happens after a

right-hand side of a
hand side of that production.

right-hand side must
be on the stack. So we prepare for a later transition on a nonterminal by allowing transitions that,

de of the production on the stack, so

hand sides of the productions
whenever a transition by a nonterminal is feasible. Epsilon transitions are added to the NFAs in
Figure 3.4 to accomplish this. We add epsilon transitions from s to the starting states of all the

a nonterminal N transitions from
states to state t. Epsilon transitions are noted in a separate table in Figure 3.5 rather than as
arrows in Figure 3.4 since doing so would result in a considerably more crowded image.

urposes: Whether they are shown in the table or the graphic

are joined by these epsilontransitions to produce a single, combined NFA.
production in the grammar as well as the beginning

state "A," which serves as the starting state of the NFA for the additional start production. This
NFA must now be transformed into a DFA using the subset. We create a table instead of

tant DFA visually, with transitions on terminals being represented as shift

: Represented the SLR Table for Grammar.

80 Basics in Compiler Design

The exception that no reduce or accept actions have yet been added. The DFA was created by
adding epsilontransitions to the NFA. These are required below for the addition of reduce and
accept actions, but after this is complete, we may delete them from the final table since we no
longer need them.To add reduce and accept actions, we first need to compute the FOLLOW sets
for each nonterminal. For purpose of calculating FOLLOW, we add yet another extra start
production:

T’’ → T$,

To handle end-of-text conditions as described below. This gives us the following result:

FOLLOW(T’) = {$}

FOLLOW(T) = {c,$}

FOLLOW(R) = {c,$}

We then add reduce actions by the following rule: If a DFA state’s contains the accepting NFA
state for a production

p : N → α,

We add reduce ‘p’ as an action to ‘s’ on all symbols in FOLLOW(N). Reduction on production 0
(the extra start production that was added before constructing the NFA) is written as accept.
Hence, we add r3 as actions at the symbols c and $ (as these are in FOLLOW(R)). State ‘1’
contains NFA state B, which accepts production ‘0’. We add this at the symbol $ (FOLLOW
(T’)). As noted above, this is written as accept abbreviated to “a”. In the same way, we add and
reduce actions.

81 Basics in Compiler Design

CHAPTER 10

CONFLICTS IN SLR PARSE TABLES

Dr. Gokul Thanigaivasan

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- t.gokul@jainuniversity.ac.in

When reduce actions are added to SLR parse-tables, we might add one to a place where there is
already a shift action, or we may add reduce actions for several different productions to the same
place. When either of these happens, we no longer have a unique choice of action that is we have
a conflict. The first situation is called a shift-reduce conflict and the other case is a
reduceconflict. Both may occur in the same place.

Conflicts are often caused by ambiguous grammars, but as is the case for LL-parsers even some
non-ambiguous grammars may generate conflicts. If a conflict is caused by ambiguous grammar,
it is usually but not always possible to find an equivalent unambiguous grammar. Alternatively,
operator precedence declarations may be used to disambiguate ambiguous grammar.

1. Add the production S’ → S, where S is the start symbol of the grammar.

2. Make an NFA for the right-hand side of each production.

3. If an NFA state‘s’ has an outgoing transition on a nonterminal ‘N’, add epsilon
transitions from ‘s’ to the starting states of the NFAs for the right-hand sides of the
productions for ‘N’.

4. Convert the combined NFA to a DFA. Use the starting state of the NFA for the
products added in step 1 as the starting state for the combined NFA.

5. Build a table cross-indexed by the DFA states and grammar symbols (terminals
including $ and non-terminals). Add shift actions for transitions of terminals and go
actions for transitions on non-terminals.

6. Calculate FOLLOW for each nonterminal. For this purpose, we add one more start
production:

S’’→ S

7. When a DFA state contains an accepting NFA state marked with production number
‘p’, where the nonterminal for ‘p’ is ‘N’, find the symbols in FOLLOW(N) and add a
reduce p action in the DFA state at all these symbols. If production ‘p’ is the
production added in step 1, add an accept action instead of a reduce ‘p’ action.

But even unambiguous grammars may in some cases generate conflicts in SLRtables. In some
cases, it is still possible to rewrite the grammar to get around the problem, but in a few cases, the
language simply is not SLR. Rewriting unambiguous grammar to eliminate conflicts is
somewhat of an art. Investigation of the NFA states that form the problematic DFA state will
often help identify the exact nature of the problem, which is the first step towards solving it.

Sometimes, changing production from left
left-recursion, in general, is not a problem for SLR
for Grammar IN Figure 1 below.

Figure

Using precedence Rules in LR

The conflict arising from the dangling
entries in the LL(1) parse table. Resolving ambiguity by deleting conflicting actions can also be
done in SLRtables. In general, there are more cases where this can be done successfully for
SLRparsers than for LL(1)-parsers. In particular, ambiguity in expression grammars like
grammar 3.2 can be eliminated this way in an SLR table, but not in an LL(1)
parser generators allow declarations of precedence and associativity for tokens used as
infixoperators. These declarations are then used to eliminate conflicts in the parse tables.

There are several advantages to this approach:

i. Ambiguous expression grammars are more compact and easier to read than
unambiguous gramma

ii. The parse tables constructed from ambiguous grammars are often smaller than tables
produced from equivalent unambiguous grammars.

iii. Parsing using ambiguous gramma
form Exp2 → Exp3 etc. are required.

Using precedence rules to eliminate conflicts is very simple. Grammar 3.2 will generate several
conflicts:

i. A conflict between shifting on + and reducing the production

ii. A conflict between shifting on + and reducing the production

iii. A conflict between shifting on * and reducing the production

Basics in Compiler Design

Sometimes, changing production from left-recursive to right-recursive may help, even though
is not a problem for SLR-parsers, as it is for LL(1)-parsers.

1 below.

gure 1: Represented the SLR DFA for Grammar.

Using precedence Rules in LR-parse Tables

he conflict arising from the dangling-else ambiguity could be removed by removing one of the
entries in the LL(1) parse table. Resolving ambiguity by deleting conflicting actions can also be
done in SLRtables. In general, there are more cases where this can be done successfully for

parsers. In particular, ambiguity in expression grammars like
grammar 3.2 can be eliminated this way in an SLR table, but not in an LL(1)
parser generators allow declarations of precedence and associativity for tokens used as
infixoperators. These declarations are then used to eliminate conflicts in the parse tables.

There are several advantages to this approach:

expression grammars are more compact and easier to read than
unambiguous grammars in the style.

The parse tables constructed from ambiguous grammars are often smaller than tables
produced from equivalent unambiguous grammars.

Parsing using ambiguous grammars is (slightly) faster, as fewer reductions of the
→ Exp3 etc. are required.

Using precedence rules to eliminate conflicts is very simple. Grammar 3.2 will generate several

A conflict between shifting on + and reducing the production

Exp → Exp+Exp.

A conflict between shifting on + and reducing the production

Exp → Exp*Exp.

A conflict between shifting on * and reducing the production

Exp → Exp+Exp.

82 Basics in Compiler Design

recursive may help, even though
parsers.SLR DFA

SLR DFA for Grammar.

else ambiguity could be removed by removing one of the
entries in the LL(1) parse table. Resolving ambiguity by deleting conflicting actions can also be
done in SLRtables. In general, there are more cases where this can be done successfully for

parsers. In particular, ambiguity in expression grammars like
grammar 3.2 can be eliminated this way in an SLR table, but not in an LL(1) table. Most LR-
parser generators allow declarations of precedence and associativity for tokens used as
infixoperators. These declarations are then used to eliminate conflicts in the parse tables.

expression grammars are more compact and easier to read than

The parse tables constructed from ambiguous grammars are often smaller than tables

rs is (slightly) faster, as fewer reductions of the

Using precedence rules to eliminate conflicts is very simple. Grammar 3.2 will generate several

83 Basics in Compiler Design

iv. A conflict between shifting on * and reducing the production

Exp → Exp*Exp.

And several more of similar nature involving - and /, for a total of 16 conflicts. Let us take each
of the four conflicts above in turn and see how precedence rules can be used to eliminate them.
We use the rules that + and * are both left-associative and that * binds more strongly than +.

i. Expressions like a+b+c cause this problem. A + is the next input symbol to be read
after a+b. We now have two options: lower a+b and group around the first addition
before even the second, or shift on the plus and group around the second addition
before the previous by subsequently reducing b+c. We choose the first of these
choices since the rules state that + is left-associative; as a result, we remove the shift-
action first from the table and maintain the reduce-action.

ii. These problematic formulations have the formula a*b+c. Again, we choose reduction
over shifting since multiplication binds more strongly than addition according to the
rules.

iii. The rules again make multiplied bind stronger in formulations of the kind a+b*c, so
we shift to avoid groups similar around the + operator and, as a result, remove the
reduce-action from the table.

iv. In scenario 4, an operator that is left-associative according to the criteria disagrees
with itself. Like in example 1, we deal with this by removing the shift.

In general, the elimination of conflicts by operator precedence declarations can be
summarized into the following rules:

i. If there is a conflict between two operators with differing priorities, the operator with
the highest priority should take precedence over the operator with the lower priority.
The operator utilized in the production that is decreased is the operator linked with a
reduce-action.

ii. If there is a conflict between operators with the same priority, the associativity of the
operators is utilized. The shiftaction is dropped and the shifted action is kept if the
operators are left-associative. In the case of right-associative operators, the shift
action is kept and the reduction action is dropped. Both acts are abandoned if the
operators are non-associative.

iii. iii. The last of these operators are utilized to determine the priority of the reduce-
action if there are several operators with defined precedence in the production that
are employed in the reduce-action.

The handling of prefix and postfix operators is comparable. Only the precedence of the prefix
and postfix operators counts since associativity only applies to infix operators. Keep in mind that
the aforementioned criteria only remove shift-reduce conflicts. The precedence rules of certain
parser generators also provide the elimination of reduce-reduce conflicts in which case the
production with the highest precedence operator is favoured, although this is less immediately
beneficial than the above.

Precedence rules shouldn't always be used to resolve disagreements. You run the danger of the
parser accepting just a portion of the intended language if you add precedence rules blindly until

no conflicts are noticed. Unless you have thoroughly examined t
determined that adding the precedence rules would not have any unfavo
should generally only use precedence declarations to express operator hierarchies.

Declarations and Actions

Each nonterminal and terminal is g
go along with the tokens that come from the laxer, such as numeric values or names of
identifiers, are stored in the datatype for a terminal. The values created for a nonterminal during
the reduce-actions parsing process utilize the type.
produces a syntax tree for that string, parser generators sometimes provide the user more control
over the output.

To do this, each production is assigned an action
that determines the value of a production that is being lowered by using the values connected
with the symbols on the right-hand side. For example, parsing an expression and applying the
right actions to each production may result in computing the expression's numerical value. In
reality, compilers may be built such that the result produced during parsing is the compiled code
of the programme. To operate on all but the most basic compilers, it is desirable to
some kind of syntax representation during parsing and t

Abstract Syntax

The syntax trees are not always optimally suitable for compilation. They contain a lot of
redundant information: Parentheses, keywords used for
also reflect structures in the grammar that are only introduced to eliminate ambiguity or to get
the grammar accepted by a parser generator
recursion. Hence, the abstract syntax is commonly used. Abstract syntax keeps the essence of the
structure of the text but omits the irrele
where each node corresponds to one or more nodes in the concrete
concrete syntax tree shown in Figure

Figure

Here the names ‘PlusExp’, ‘MulExp’ and ‘NumExp’ may be constructors in a datatype, they may
be elements from an enumerated type used as tags in a uniontype or they may y be names of
subclasses of an Exp class. The names indicate which product is chosen, so there is no need to
keep the sub-trees that are implied by the choice of production, such as t
symbol +. Likewise, the sequence of nodes Exp, Exp2,
combined into a single node NumExp(2) that includes both the choice of productions for Exp,

Basics in Compiler Design

no conflicts are noticed. Unless you have thoroughly examined the parser activities and
determined that adding the precedence rules would not have any unfavourable effects, you
should generally only use precedence declarations to express operator hierarchies.

Declarations and Actions

Each nonterminal and terminal is given a datatype that is defined and allocated. The values that
go along with the tokens that come from the laxer, such as numeric values or names of
identifiers, are stored in the datatype for a terminal. The values created for a nonterminal during

rsing process utilize the type. Although theoretically speaking text parsing
produces a syntax tree for that string, parser generators sometimes provide the user more control

To do this, each production is assigned an action. The action is a piece of programming language
that determines the value of a production that is being lowered by using the values connected

hand side. For example, parsing an expression and applying the
production may result in computing the expression's numerical value. In

reality, compilers may be built such that the result produced during parsing is the compiled code
of the programme. To operate on all but the most basic compilers, it is desirable to
some kind of syntax representation during parsing and then act on this representation.

are not always optimally suitable for compilation. They contain a lot of
redundant information: Parentheses, keywords used for grouping purposes only, and so on. They
also reflect structures in the grammar that are only introduced to eliminate ambiguity or to get

accepted by a parser generator such as left-factorization or elimination of left
ract syntax is commonly used. Abstract syntax keeps the essence of the

f the text but omits the irrelevant details. An abstract syntax tree is a tree structure
ds to one or more nodes in the concrete syntax tree. For e

syntax tree shown in Figure 2 may be represented by the following abstract syntax tree:

Figure 2: Represented the Abstract Syntax Tree.

Here the names ‘PlusExp’, ‘MulExp’ and ‘NumExp’ may be constructors in a datatype, they may
elements from an enumerated type used as tags in a uniontype or they may y be names of

subclasses of an Exp class. The names indicate which product is chosen, so there is no need to
trees that are implied by the choice of production, such as the sub-tree that holds the

symbol +. Likewise, the sequence of nodes Exp, Exp2, and Exp3, at the left of Figure XYZ are
to a single node NumExp(2) that includes both the choice of productions for Exp,

84 Basics in Compiler Design

he parser activities and
rable effects, you

should generally only use precedence declarations to express operator hierarchies.

iven a datatype that is defined and allocated. The values that
go along with the tokens that come from the laxer, such as numeric values or names of
identifiers, are stored in the datatype for a terminal. The values created for a nonterminal during

Although theoretically speaking text parsing
produces a syntax tree for that string, parser generators sometimes provide the user more control

. The action is a piece of programming language
that determines the value of a production that is being lowered by using the values connected

hand side. For example, parsing an expression and applying the
production may result in computing the expression's numerical value. In

reality, compilers may be built such that the result produced during parsing is the compiled code
of the programme. To operate on all but the most basic compilers, it is desirable to generate

hen act on this representation.

are not always optimally suitable for compilation. They contain a lot of
grouping purposes only, and so on. They

also reflect structures in the grammar that are only introduced to eliminate ambiguity or to get
factorization or elimination of left

ract syntax is commonly used. Abstract syntax keeps the essence of the
vant details. An abstract syntax tree is a tree structure

syntax tree. For example, the
may be represented by the following abstract syntax tree:

: Represented the Abstract Syntax Tree.

Here the names ‘PlusExp’, ‘MulExp’ and ‘NumExp’ may be constructors in a datatype, they may
elements from an enumerated type used as tags in a uniontype or they may y be names of

subclasses of an Exp class. The names indicate which product is chosen, so there is no need to
tree that holds the

Exp3, at the left of Figure XYZ are
to a single node NumExp(2) that includes both the choice of productions for Exp,

85 Basics in Compiler Design

Exp2 and Exp3 and the value of the terminal node. In short, each node in the abstract syntax tree
corresponds to one or more nodes in the concrete syntax tree.

A designer of a compiler or interpreter has much freedom in the choice of abstract syntax. Some
use abstract syntax that retains all of the structure of the concrete syntax trees plus additional
positioning information used for errorreporting. Others prefer abstract syntax that contains only
the information necessary for compilation or interpretation, skipping parentheses and others for
compilation or interpretation of irrelevant structure, as we did above. Exactly how the abstract
syntax tree is represented and built depends on the parser generator used. Normally, the action
assigned to production can access the values of the terminals and nonterminal on the right-hand
side of production through specially named variables often called $1, $2, etc. and produces the
value for the node corresponding to the left-hand-side either by assigning it to a special variable
($0) or letting it be the value of an action expression.

The data structures used for building abstract syntax trees depend on the language. Most
statically typed functional languages support tree-structured datatypes with named constructors.
In such languages, it is natural to represent abstract syntax by one datatype per syntactic category
(e.g., Exp above) and one constructor for each instance of the syntactic category (e.g., PlusExp,
NumExp and MulExp above). In Pascal, each syntactic category can be represented by a variant
record type and each instance as a variant of that. In C, a syntactic category can be represented
by a union of structs, each struct representing an instance of the syntactic category and the union
covering all possible instances. In object-oriented languages such as Java, a syntactic category
can be represented as an abstract class or interface where each instance in a syntactic category is
a concrete class that implements the abstract class or interface.

In most cases, it is fairly simple to build abstract syntax using the actions for the productions in
the grammar. It becomes complex only when the abstract syntax tree must have a structure that
differs nontrivially from the concrete syntax tree. One example of this is if left-recursion has
been eliminated to make an LL(1) parser. The preferred abstract syntax tree will in most cases be
similar to the concrete syntax tree of the original left-recursive grammar rather than that of the
transformed grammar. As an example, the left-recursive grammar:

E → E +num

E → num

Gets transformed by left-recursion elimination into

E → numE’

E’→ +numE’

E’ →

Which yields a completely different syntax tree. We can use the actions assigned to the
productions in the transformed grammar to build an abstract syntax tree that reflects the structure
in the original grammar. In the transformed grammar, E’ should return an abstract syntax tree
with a hole. The intention is that this hole will eventually be filled by another abstract syntax
tree:

• The second production for E’ returns just a hole.

86 Basics in Compiler Design

• In the first production for E’, the + and num terminals are used to produce a tree for a
plus-expression (i.e., a PlusExp node) with a hole in place of the first subtree. This
tree is used to fill the hole in the tree returned by the recursive use of E’, so the
abstract syntax tree is essentially built outsidein. The result is a new tree with a hole.

• In the production for E, the hole in the tree returned by the E’ nonterminal is filled by
a NumExp node with the number that is the value of the num terminal.

The best way of building trees with holes depends on the type of language used to implement the
actions. Let us first look at the case where a functional language is used. The actions shown
below for the original grammar will build an abstract syntax tree similar to the one shown at the
beginning of this section.

E → E +num{ PlusExp($1,NumExp($3)) }

E → num{ NumExp($1) }

We now want to make actions for the transformed grammar that will produce the same abstract
syntax trees as this will. In functional languages, an abstract syntax tree with a hole can be
represented by a function. The function takes as an argument what should be put into the hole
and returns a syntax tree where the hole is filled with this argument. The hole is represented by
the argument variable of the function. We can write this as actions to the transformed grammar:

E → numE’ { $2(NumExp($1)) }

E’→ +numE’ { λx.$3(PlusExp(x,NumExp($2))) }

E→ {λx.x }

Where λx.e is a nameless function that takes x as argument and returns the value of the
expression e. The empty production returns the identity function, which works like a top-level
hole. The non-empty production for E’ applies the function $3 returned by the E’ on the right-
hand side to a subtree, hence filling the hole in $3 by this subtree. The sub-tree itself has a hole
x, which is filled when applying the function returned by the right-hand side. The production for
E applies the function $2 returned by E’ to a sub-tree that has no holes and, hence, returns a tree
with no holes.

In SML, λx.e is written as fn x => e, in Haskell as \x -> e and in Scheme as (lambda
(x) e).

The imperative version of the actions in the original grammar is:

E → E +num{ $0 = PlusExp($1,NumExp($3)) }

E → num{ $0 = NumExp($1) }

In this setting, NumExp and PlusExp are not constructors but functions that allocate and build
nodes and return pointers to these. Unnamed functions of the kind used in the above solution for
functional languages cannot be built in most imperative languages, so holes must be an explicit
part of the datatype that is used to represent abstract syntax. These holes will be overwritten
when the values are supplied. E’ will, hence, return a record holding both an abstract syntax tree
in a field named tree and a pointer to the hole that should be overwritten in a field named hole.

As actions (using C-style notation), this becomes:

E → numE’ { $2-

 $0 = $2.tree }

E’→ +numE’ { $0.hole = makeHole();

 $3-

 $0.tree = $3.tree

E’→ { $0.hole = makeHole();

 $0.tree = $0.hole }

This may look bad, but left-recursion removal is rarely needed when using LR
An alternative approach is to let the parser build an interme
the transformed grammar, and then let a separate pass restructure the intermediate syntax tree to
produce the intended abstract syntax. Some LL(1) parser generators can remove leftrecursion
automatically and will afterwards restructure the syntax tree so it fits the original grammar.

Conflict Handling in Parser Generators

The user of a parser generator should anticipate conflicts to be recorded when the grammar is
initially provided to the parser generator for all but
arise from ambiguity or the parsing technique's limits. In any case, disagreements may often be
resolved by editing the language or adding precedence statements.
NFA States in Figure 3.

Figure 3: Represented that the Textual Representation of NFA States

Most parser generators can provide information that is useful to locate where in the grammar the
problems are. When a parser generator reports conflicts, it will tell in which state in th

Basics in Compiler Design

->hole = NumExp($1);

$0 = $2.tree }

 +numE’ { $0.hole = makeHole();

->hole = PlusExp($0.hole,NumExp($2));

$0.tree = $3.tree }

 { $0.hole = makeHole();

$0.tree = $0.hole }

recursion removal is rarely needed when using LR-parser generators.
An alternative approach is to let the parser build an intermediate (semi-abstract) syntax tree from
the transformed grammar, and then let a separate pass restructure the intermediate syntax tree to
produce the intended abstract syntax. Some LL(1) parser generators can remove leftrecursion

rwards restructure the syntax tree so it fits the original grammar.

Conflict Handling in Parser Generators

The user of a parser generator should anticipate conflicts to be recorded when the grammar is
initially provided to the parser generator for all but the simplest grammars. These conflicts may
arise from ambiguity or the parsing technique's limits. In any case, disagreements may often be
resolved by editing the language or adding precedence statements.Textual Represen

: Represented that the Textual Representation of NFA States

Most parser generators can provide information that is useful to locate where in the grammar the
problems are. When a parser generator reports conflicts, it will tell in which state in th

87 Basics in Compiler Design

parser generators.
abstract) syntax tree from

the transformed grammar, and then let a separate pass restructure the intermediate syntax tree to
produce the intended abstract syntax. Some LL(1) parser generators can remove leftrecursion

rwards restructure the syntax tree so it fits the original grammar.

The user of a parser generator should anticipate conflicts to be recorded when the grammar is
the simplest grammars. These conflicts may

arise from ambiguity or the parsing technique's limits. In any case, disagreements may often be
Textual Representation of

: Represented that the Textual Representation of NFA States.

Most parser generators can provide information that is useful to locate where in the grammar the
problems are. When a parser generator reports conflicts, it will tell in which state in the table

88 Basics in Compiler Design

these occur. This state can be written out in a barely human-readable form as a set of NFAstates.
Since most parser generators rely on pure ASCII, they cannot draw the NFAs as diagrams.
Instead, they rely on the fact that each state in the NFA corresponds to a position in production in
grammar. If we, for example, look at the NFA states, these would be written as yyy. Note that a
‘.’ is used to indicate the position of the state in the production. State 4 of the table will hence be
written as:

R���� b . R

R ���� .

R ���� . bR

The set of NFA states, combined with information about which symbols a conflict occurs, can be
used to find a remedy, e.g. by adding precedence declarations. If all efforts to get grammar
through a parser generator fail, a practical solution may be to change the grammar so it accepts a
larger language than the intended language and then post-process the syntax tree to reject “false
positives”. This elimination can be done at the same time as type-checking.

Properties of Context-free Languages:

We discussed a few regular language characteristics. Some of them, but not all, are shared by
context-free languages. Deterministic finite automata for regular languages include the same
group of languages as nondeterministic automata. The situation for context-free languages is
different: All context-free languages are covered by nondeterministic stack automata, but only a
tight subset is covered by deterministic stack automata. Deterministic context-free languages are
the subset of context-free languages that can be understood by deterministic stack automata. LR
parsers can recognize context-free, deterministic languages.

We have noticed that finiteness is the fundamental restriction of regular languages: The inability
to count infinitely prevents a finite automaton from keeping track of matching parentheses or
other features. Such counting is possible in context-free languages, which effectively use the
stack for this. However, there are some restrictions: While it is feasible to express the language
"anbn | n≥0" by a context-free grammar, the language "anbncn | n≥0" is not a context-free language
since it can only keep track of one object at a time. Further limiting the languages that may be
expressed is the tight LIFO sequence in which the information is retained on the stack. The
language of palindromes, or strings that read the same both forward and backwards, is easy to
describe by context-free grammar, but the language of strings that can be created by repeating a
string twice is not.

Context-free languages are closed under union, just like regular languages, and it is simple to
create a grammar for the union of two languages given grammars for each. Additionally closed
under prefixes, suffixes, subsequences, and reversal are context-free languages. A context-free
language that consists just of its subsequences is regular. Languages that lack context, however,
are not closed under intersection or complement. For instance, the languages "anbn cm | m,n ≥0"
and "ambncn | m,n≥0" are both context-free, but their intersection "anbncn | n≥0" is not, and the
language complement is not either.

89 Basics in Compiler Design

CHAPTER 11

SCOPES AND SYMBOL TABLES

Dr. Santosh S Chowhan

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- santosh.sc@jainuniversity.ac.in

The ability to name things like variables, functions, and types is a key idea in programming
languages. There will be a declaration for each of these named objects, in which the name is
established as a synonym for the object. We refer to this as binding. Each name will also be used
a variety of times to refer to the item to which it is tied. A name's declaration often only affects a
small piece of the programme. Where the name may be seen. These declarations are known as
local declarations, as opposed to global declarations, which make the stated name visible across
the whole programme. It is possible for the same name to be defined in many nested scopes. In
this situation, it is typical for that usage of the name to be defined by the declaration that is
nearest to it. The term nearest in this instance refers to the program's syntax tree: A declaration's
scope is a sub-tree of the syntax tree, and nested declarations result in scopes that are themselves
nested sub-trees. The declaration of a name that is closest to the usage of the name is thus the one
that corresponds to the smallest subtree that contains the use of the name. Take a look at this C
statement block as an illustration:
{

int x = 1;

int y = 2;

{

 double x = 3.14159265358979;

 y += (int)x;

}

 y += x;

}

Integer variables x and y are declared in the two lines that follow the initial opening brace, with
scope up to the closing brace in the final line. The second opening brace establishes a new scope
and declares the floating-point variable x with an initial value near to. The original x variable is
hidden until the inner scope expires since this will have scope up to the first closing brace. The
formula y += (int)x; adds 3 to y, making its new value 5. The initial x is restored since we have
left the inner scope in the subsequent assignment, y += x;. As a result, the assignment will add 1
to y, giving it a final value of 6. The most frequent scoping rule in contemporary programming
languages is static or lexical binding, which bases scoping on the structure of the syntax tree as
seen in the example. =The remainder of this chapter and the rest of the book will assume that

90 Basics in Compiler Design

static binding is being utilised. Dynamic binding is a feature of a few languages that determines
the name's current usage based on the declaration that was most recently encountered while the
programme was being executed. The methods that are described as being utilised in a compiler in
the remainder of this chapter must be employed at run-time if the language supports dynamic
binding since dynamic binding cannot be resolved at compile-time by nature. To ensure that each
usage of a name is accurately ascribed to its declaration, a compiler will need to keep track of
names and the objects with which they are associated. A symbol table is often used to do this or
environment, as it is sometimes called.

Symbol Tables

A symbol table is a table that binds names to information. We need several operations on symbol
tables to accomplish this:

A. We need an empty symbol table, in which no name is defined.

B. We need to be able to bind a name to a piece of information. In case the name is already
defined in the symbol table, the new binding takes precedence over the old.

C. We need to be able to look up a name in a symbol table to find the information the name
is bound to. If the name is not defined in the symbol table, we need to be told that.

D. We need to be able to enter a new scope.

E. We need to be able to exit a scope, reestablishing the symbol table to what it was before
the scope was entered.

Implementation of Symbol Tables:

The most crucial difference between the various symbol table implementations is how scopes are
handled. This may be accomplished either with an imperative or destructively-updated data
structure or with a durable or functional data structure. A persistent data structure has the feature
that it cannot be destroyed by an operation. The previous structure is preserved unmodified
because conceptually, each time an operation modifies the data structure, a new updated copy of
the data structure is created.

This implies that because the original symbol table was saved by the persistent nature of the data
structure, it is simple to reconstruct it when a scope ends. In reality, when a symbol table is
changed, only a little piece of the data structure is duplicated; the majority is shared with the
preceding version.

Since there is only one copy of the symbol table in the imperative method, specific actions are
needed to save the data necessary to roll back the symbol table to a prior state. An auxiliary stack
may be used to do this. The previous binding for a name that is overwritten is stored (pushed) on
the auxiliary stack whenever an update is done. An entry marker is put onto the auxiliary stack
when a new scope is entered.

The bindings on the auxiliary stack (down to the marker) are used to reconstruct the previous
symbol table whenever the scope is terminated.

As a result, the bindings and the marker are removed from the auxiliary stack, putting it back in
the position it was in before the scope was entered. Below, we'll examine the basic

91 Basics in Compiler Design

implementations of both strategies and talk about how more complex strategies might address
some of the efficiency issues with simpler strategies.

Simple Persistent Symbol Tables

In functional languages like SML, Scheme or Haskell, persistent data structures are the norm
rather than the exception which is why persistent data structures are sometimes called functional
data structures. For example, when a new element is added to the front of a list or an element is
taken off the front of the list, the old list still exists and can be used elsewhere. A list is a natural
way to implement a symbol table in a functional language: A binding is a pair of a name and its
associated information, and a symbol table is a list of such pairs. The operations are implemented
in the following way:

• empty: An empty symbol table is an empty list.

• binding: A new binding (name/information pair) is added (consed) to the front of the
list.

• lookup: The list is searched until a pair with a matching name is found. The
information paired with the name is then returned. If the end of the list is reached, an
indication that this happened is returned instead. This indication can be made by
raising an exception or by letting the lookup function return a special value
representing “not found”. This requires a type that can hold both normal information
and this special value, i.e., a sumtype.

• enter: The old list is remembered, i.e., a reference is made to it.

• exit: The old list is recalled, i.e., the above reference is used.

The latter two operations are not explicit, as the variable used to hold the symbol table before
entering a new scope will still hold the same symbol table after the scope is exited. So all that is
needed is a variable to hold (a reference to) the symbol table. As new bindings are added to the
front of the list and the list is searched from the front to the back, bindings in inner scopes will
automatically take precedence over bindings in outer scopes. Another functional approach to
symbol tables is using functions: A symbol table is quite naturally seen as a function from names
to information. The operations are:

• empty: An empty symbol table is a function that returns an error indication (or raises
an exception) no matter what its argument is.

• binding: Adding a binding of the name n to the information i in a symbol table t is
done by defining a new symbol-table function t 0 in terms t and the new binding.
When t 0 is called with the name n1 as argument, it compares n1 to n. If they are
equal, t 0 returns the information i. Otherwise, t 0 calls t with n1 as argument and
returns the result that this call yields. In Standard ML, we can define a binding
function this way:

bind (n,i,t) = fn n1 => if n1=n then i else t n1

• lookup: The symbol-table function is called with the name as argument.

• enter:The old function is remembered referenced.

• exit: The old function is recalled by using a reference.

92 Basics in Compiler Design

Again, the latter two operations are mostly implicit.

A Simple Imperative Symbol Table

Imperative symbol tables are natural to use if the compiler is written in an imperative language.
A simple imperative symbol table can be implemented as a stack, which works in a way similar
to the list-based functional implementation:

• empty: An empty symbol table is an empty stack.

• binding: A new binding (name/information pair) is pushed on top of the stack.

• lookup: The stack is searched top-to-bottom until a matching name is found. The
information paired with the name is then returned. If the bottom of the stack is
reached, we instead return an errorindication.

• enter: We push a marker on the top of the stack.

• exit: We pop bindings from the stack until a marker is found.

This is also popped from the stack. Note that since the symbol table is itself a stack, we don’t
need the auxiliary stack. This is not quite a persistent data structure, as leaving a scope will
destroy its symbol table. For simple languages, this won’t matter, as scope isn’t needed again
after it is exited. But language features such as classes, modules and lexical closures can require
symbol tables to persist after their scope is exited. In these cases, a real persistent symbol table
must be used, or the needed parts of the symbol table must be copied and stored for later retrieval
before exiting a scope.

Efficiency Issues

Although the aforementioned solutions are all straightforward, they all have the same efficiency
issue. Since lookup is accomplished using linear search, the worst-case lookup time is inversely
correlated with the size of the symbol table. This is mostly a library-related issue: Software often
makes use of libraries that define hundreds of names. Hashing is a popular method for addressing
this issue: To index an array, names are hashed processed into integers. The bindings of names
with the same hash code are then listed in a linear order for each member of the array.

These lists will often be quite short if the hash table is big enough, making the lookup time
almost constant. Entering and leaving scopes is a little more challenging when using hash tables.
Although each hash table element is a list that may be handled similarly in simple situations,
doing this for every element of an array at each entry and exit adds a significant cost. Instead,
imperative solutions often employ a single auxiliary stack to keep track of all table modifications
so they may be undone in a period proportionate to the number of updates that were performed in
the local scope. Persistent hash tables are often used in functional implementations, which solves
the issue.

Shared or Separate Name Spaces

A variable and a function in the same scope may have the same name in certain languages (like
Pascal) since the context of usage will indicate whether a variable or a function is utilised. Since
declaring a name in one namespace doesn't impact the same name in the other, we say that
functions and variables have different namespaces. Variables and functions cannot be
distinguished in other languages based on context. As a result, a function defined in an outer

93 Basics in Compiler Design

scope may be hidden by a local variable declaration or vice versa. The namespaces for variables
and functions in these languages are similar.

For all the many names that might exist in a programme, such as variables, functions, types,
exceptions, constructors, classes, field selectors, etc., namespaces may be shared or distinct.
Language determines which shared name spaces exist. One symbol table per namespace may be
used to construct distinct namespaces, but shared name spaces naturally use a single symbol
table. Even though there are several namespaces, there are occasions when it is more convenient
to utilise a single symbol table. The names may be readily changed by including name-space
indications. A name-space indication may be a tag that is used in conjunction with the name or it
can be a textual prefix to the name. In either scenario, a lookup in the symbol table requires that
the name and name-space indication of the symbol being looked up match both those of the
entry's name and name-space indicator.

94 Basics in Compiler Design

CHAPTER 12

INTERPRETATION

Dr. Thirukumaran Subbiramani

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- s.thirukumaran@jainuniversity.ac.in

The abstract syntax tree of a programme exists in memory as a data structure after lexing and
parsing. But we haven't yet addressed the necessity for a programme to be run. Interpretation is
the most basic kind of programme execution. A programme known as an interpreter performs
interpretation by taking a program's abstract syntax tree and executing it by analysing the syntax
tree to determine what needs to be done. Similar to how a person might assess a mathematical
phrase is as follows: The expression is evaluated piecemeal, beginning with the innermost
parenthesis and working outwards until the result of the expression is obtained. The procedure
may then be repeated using different values for the variables.

There are several variations, however. An interpreter will leave the formula or, rather, the
abstract syntax tree of an expression unchanged and use a symbol table to keep track of the
values of variables, as opposed to a human who would copy the text of the formula with
variables replaced by values and then write a sequence of more and more reduced copies of the
formula until it is reduced to a single value. The interpreter is a function that returns the value of
the expression represented by the abstract syntax tree rather than reducing a formula. It accepts
an abstract syntax tree and a symbol table as parameters. When evaluating a variable, the
function may look up the value in the symbol table and can call itself recursively on various
branches of the abstract syntax tree to determine the values of sub-expressions.

The underlying notion behind this procedure which may be expanded to include statements and
declarations is the same. A function accepts the program's abstract syntax tree and, if necessary,
any additional context data such as a symbol table or the program's input, and it returns the
program's output. The interpreter may perform some input and output as unintended
consequences. Since the symbol tables are presumed to be durable in this chapter, leaving an
inner scope does not automatically restore the symbol table for the outer scope. While we don't
need to keep the symbol tables for inner scopes once they are exited in the chapter's main
content, we will need them for one of the exercises.

Structure of Interpreter

An interpreter design pattern is one of the behavioural design patterns. The interpreter pattern
is used to define a grammatical representation of a language and provides an interpreter to deal
with this grammar.

• This pattern involves implementing an expression interface which tells us to
interpret a particular context. According to the Figure 1 this pattern is used in SQL
parsing, symbol processing engines etc.

• This pattern performs upon a hierarchy of expressions. Each expression here is
terminal or non-terminal.

• The tree structure of
defined by the composite design pattern with terminal ex
objects and non-terminal expressions being composites.

• The tree contains the expressions to be evaluated and is usually generated by a
parser. The parser itself is not a part of the interpreter pattern.
Here is the hierarchy of expressions for

Figure 1: Represented the

UML Diagram Interpreter

• AbstractExpression

Declares an interpret () operation that all nodes (terminal and nonterminal)
overrides.

• Terminal Expression

Implements the interpret() operation for terminal expressions.

• Nonterminal Expression

(Addition Expression, Subtraction Expression, and Multiplication Expression):

Implements the interpret () operation for all nonterminal expressions.

• Context (String):

Contains information that is global to the interpreter. It is this String expression with the
Postfix notation that has to be interpreted and parsed.

• Client (Expression Parser):

Basics in Compiler Design

The tree structure of the Interpreter design pattern is somewhat similar to that
defined by the composite design pattern with terminal expressions being leaf

terminal expressions being composites.

The tree contains the expressions to be evaluated and is usually generated by a
parser. The parser itself is not a part of the interpreter pattern.

hierarchy of expressions for “+ – 9 8 7” :

Figure 1: Represented theImplementing the Interpreter

Interpreter Design Pattern

AbstractExpression (Expression):

Declares an interpret () operation that all nodes (terminal and nonterminal)

Expression (Number Expression):

Implements the interpret() operation for terminal expressions.

Expression

(Addition Expression, Subtraction Expression, and Multiplication Expression):

operation for all nonterminal expressions.

Contains information that is global to the interpreter. It is this String expression with the
Postfix notation that has to be interpreted and parsed.

(Expression Parser):

95 Basics in Compiler Design

Interpreter design pattern is somewhat similar to that
pressions being leaf

The tree contains the expressions to be evaluated and is usually generated by a
parser. The parser itself is not a part of the interpreter pattern. For Example :

 Pattern.

Declares an interpret () operation that all nodes (terminal and nonterminal) in the AST

(Addition Expression, Subtraction Expression, and Multiplication Expression):

Contains information that is global to the interpreter. It is this String expression with the

Builds or is provided the AST assembled from Terminal Expression and Non
Expression. The Client invokes the interpret () operation.
Interpreter Design Pattern.

Figure 2: Represented that the

// Expression interface used to

// check the interpreter.

interface Expression

{

 booleaninterpreter(String con);

}

// TerminalExpression class implementing

// the above interface. This interpreter

// just check if the data is

// interpreter data.

class TerminalExpression implements Expression

{

 String data;

 public TerminalExpression(String data)

 {

 this.data = data;

 }

Basics in Compiler Design

the AST assembled from Terminal Expression and Non
Expression. The Client invokes the interpret () operation. In Figure 2 the

2: Represented that theUML Diagram Interpreter Design

// Expression interface used to

// check the interpreter.

interface Expression

booleaninterpreter(String con);

// TerminalExpression class implementing

// the above interface. This interpreter

// just check if the data is the same as the

class TerminalExpression implements Expression

public TerminalExpression(String data)

this.data = data;

96 Basics in Compiler Design

the AST assembled from Terminal Expression and Non-Terminal
the UML Diagram

Design Pattern.

97 Basics in Compiler Design

 public booleaninterpreter(String con)

 {

 if(con.contains(data))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

}

// OrExpression class implementing

// the above interface. This interpreter

// just returns the condition of the

// data is the same as the interpreter data.

class OrExpression implements Expression

{

 Expression expr1;

 Expression expr2;

 public OrExpression(Expression expr1, Expression expr2)

 {

 this.expr1 = expr1;

 this.expr2 = expr2;

 }

 public booleaninterpreter(String con)

 {

 return expr1.interpreter(con) || expr2.interpreter(con);

 }

}

// AndExpression class implementing

// the above interface. This interpreter

98 Basics in Compiler Design

// just returns the And condition of the

// data is same as the interpreter data.

class AndExpression implements Expression

{

 Expression expr1;

 Expression expr2;

 public AndExpression(Expression expr1, Expression expr2)

 {

 this.expr1 = expr1;

 this.expr2 = expr2;

 }

 public booleaninterpreter(String con)

 {

 return expr1.interpreter(con) && expr2.interpreter(con);

 }

}

// Driver class

class InterpreterPattern

{

 public static void main(String[] args)

 {

 Expression person1 = new TerminalExpression("Kushagra");

 Expression person2 = new TerminalExpression("Lokesh");

 Expression isSingle = new OrExpression(person1, person2);

 Expression vikram = new TerminalExpression("Vikram");

 Expression committed = new TerminalExpression("Committed");

 Expression isCommitted = new AndExpression(vikram, committed);

 System.out.println(isSingle.interpreter("Kushagra"));

 System.out.println(isSingle.interpreter("Lokesh"));

 System.out.println(isSingle.interpreter("Achint"));

 System.out.println(isCommitted.interpreter("Committed,
Vikram"));

 System.out.println(isCommitted.interpreter("Single, Vikram"));

99 Basics in Compiler Design

 }

}

The output of this program is that:

true

true

false

true

false

In the above code, we are creating an interface Expression and concrete classes implementing
the Expression interface. A class TerminalExpression is defined which acts as a main
interpreter and other classes OrExpression, AndExpression is used to create combinational
expressions.

Advantages

• It’s easy to change and extend the grammar. Because the pattern uses classes to
represent grammar rules, you can use inheritance to change or extend the grammar.
Existing expressions can be modified incrementally, and new expressions can be
defined as variations on old ones.

• Implementing the grammar is easy, too. Classes defining nodes in the abstract
syntax tree have similar implementations. These classes are easy to write, and often
their generation can be automated with a compiler or parser generator.

Disadvantages

• Complex grammars are hard to maintain. The Interpreter pattern defines at least
one class for every rule in the grammar. Hence grammars containing many rules
can be hard to manage and maintain.

Type Checking

Lexing and parsing will reject many texts as not being correct programs. However, many
languages have well-formed requirements that cannot be handled exclusively by the techniques
seen so far. These requirements can, for example, be static type correctness or a requirement that
pattern-matching or casestatements are exhaustive. These properties are most often not context-
free, i.e., they cannot be checked by the membership of a context-free language. Consequently,
they are checked by a phase that conceptually comes after syntax analysis though it may be
interleaved with it.

These checks may happen in a phase that does nothing else, or they may be combined with the
actual execution or translation to another language. Often, the translator may exploit or depend
on type information, which makes it natural to combine the calculation of types with the actual
translation. We covered type-checking during execution, which is normally called dynamic
typing. Will in this chapter assume that type checking and related checks are done in a phase
previous to execution or translation (i.e., static typing), and similarly assume that any
information gathered by this phase is available in subsequent phases.

The Design Space of Types

We have already discussed the difference between static and dynamic
are made before or during the execution of a program. Additionally, we can distinguish weakly
and strongly typed languages. Strong typing means that the language implementation ensures
that whenever an operation is performed,
operation is defined for, so you, for example, do not try to concatenate a string and a floating
point number. This is independent of whet
dynamically during execution.Design S

Figure 3: Represented the

In contrast, a weakly typed language gives no gu
arguments that make sense for the operation. The
code: Operations are just performed with no checks, and if there is any concept of type at the
machine level, it is fairly limited: Regis
possibly address registers, and
languages are mostly used for system programming, where you need to manipulate move, copy,
encrypt or compress data without regard to what the data represents. Many languages combine
both strong and weak typing or both static and dy
execution and other during execution, and some types are not checked at all.

For example, C is a statically typed language
but not all types are checked. For example, you can store an integer in a union
read it back as a pointer or floating
multiply two strings, the interpreter will see if the s
“read” the strings as numbers and multiply these. This is a kind of weak typing, as the
multiplication operation is applied to arguments strings
sense. But instead of, like machine code, blindly try
of the strings as if they were numbers,
make the values conform to the operation.

Basics in Compiler Design

We have already discussed the difference between static and dynamic typing, i.e., if type checks
execution of a program. Additionally, we can distinguish weakly

and strongly typed languages. Strong typing means that the language implementation ensures
that whenever an operation is performed, the arguments to the operation are of a type that the
operation is defined for, so you, for example, do not try to concatenate a string and a floating
point number. This is independent of whether this is ensured statically before

Design Space of Types shown in Figure 3.

: Represented theDesign Space of Types.

In contrast, a weakly typed language gives no guarantee that operations are per
arguments that make sense for the operation. The archetypical weakly typed language is machine
code: Operations are just performed with no checks, and if there is any concept of type at the

el, it is fairly limited: Registers may be divided into an integer, floating point and
registers, and memory is divided into only code and data. Weakly typed

languages are mostly used for system programming, where you need to manipulate move, copy,
encrypt or compress data without regard to what the data represents. Many languages combine

th strong and weak typing or both static and dynamic typing: Some types are checked before
execution and other during execution, and some types are not checked at all.

is a statically typed language since no checks are performed during execution
but not all types are checked. For example, you can store an integer in a union-typed variable and
read it back as a pointer or floating-point number. Another example is JavaScript

nterpreter will see if the strings contain sequences of dig
“read” the strings as numbers and multiply these. This is a kind of weak typing, as the

ration is applied to arguments strings where multiplication does not make
like machine code, blindly trying to multiply the machine representations

of the strings as if they were numbers, JavaScript performs a dynamic check and conversion to
make the values conform to the operation.

100 Basics in Compiler Design

typing, i.e., if type checks
execution of a program. Additionally, we can distinguish weakly

and strongly typed languages. Strong typing means that the language implementation ensures
the arguments to the operation are of a type that the

operation is defined for, so you, for example, do not try to concatenate a string and a floating-
before execution or

arantee that operations are performed on
archetypical weakly typed language is machine

code: Operations are just performed with no checks, and if there is any concept of type at the
integer, floating point and

divided into only code and data. Weakly typed
languages are mostly used for system programming, where you need to manipulate move, copy,
encrypt or compress data without regard to what the data represents. Many languages combine

namic typing: Some types are checked before

are performed during execution,
typed variable and

JavaScript: If you try to
trings contain sequences of digits and, if so,

“read” the strings as numbers and multiply these. This is a kind of weak typing, as the
where multiplication does not make

ing to multiply the machine representations
performs a dynamic check and conversion to

101 Basics in Compiler Design

I will still call this behaviour weak typing, as there is nothing that indicates that converting
strings to numbers before multiplication makes any more sense than just multiplying the machine
representations of the strings. The main point is that the language, instead of reporting a possible
problem, silently does something that probably makes no sense. Figure 6.3 shows a diagram of
the design space of static vs. dynamic and weak vs. strong typing, placing some well-known
programming languages in this design space. Note that the design space is shown as a triangle: If
you never check types, you do so neither statically nor dynamically, so at the weak end of the
weak vs. strong spectrum, the distinction between static and dynamic is meaningless.

Attributes

The checking phase operates on the abstract syntax tree of the program and may make several
passes over this. Typically, each pass is a recursive walk over the syntax tree, gathering
information or using information gathered in earlier passes. Such information is often called
attributes of the syntax tree. Typically, we distinguish between two types of attributes:
Synthesized attributes are passed upwards in the syntax tree, from the leaves up to the root.
Inherited attributes are, conversely, passed downwards in the syntax tree. Note, however, that
information that is synthesized in one sub-tree may be inherited by another sub-tree or, in a later
pass, by the same sub-tree. An example of this is a symbol table: This is synthesized by a
declaration and inherited by the scope of the declaration.

When declarations are recursive, the scope may be the same syntax tree as the declaration itself,
in which case one pass over this tree will build the symbol table as a synthesized attribute while a
second pass will use it as an inherited attribute. Typically, each syntactic category represented by
a type in the data structure for the abstract syntax tree or by a group of a related nonterminal in
the grammar will have its own set of attributes.

When we write a checker as a set of mutually recursive functions, there will be one or more such
functions for each syntactical category. Each of these functions will take inherited attributes
including the syntax tree itself as arguments and return synthesized attributes as results. We will,
in this chapter, focus on type checking, and only briefly mention other properties that can be
checked. The methods used for type checking can in most cases easily be modified to handle
such other checks.

Environments for Type Checking

To type-check the program, we need symbol tables that bind variables and functions to their
types. Since there are separate namespaces for variables and functions, we will use two symbol
tables, one for variables and one for functions. A variable is bound to one of two typesint or
bool. A function is bound to its type, which consists of the types of its arguments and the type of
its result.

Function types are written as a parenthesized list of the argument types, an arrow and the result
type, e.g., (int,bool) → int for a function taking two parameters of type int and bool, respectively
and returning an integer. We will assume that symbol tables are persistent, so no explicit action
is required to restore the symbol table for the outer scope when exiting an inner scope. We don’t
need to preserve symbol tables for inner scopes once these are exited so a stack-like behaviour is
fine.

Type Checking Expressions

The symbol tables for variables and functions are inherited properties when we type check
expressions. The expression's type (int or
allow the type checker function to utilise a notation similar to the concrete syntax for pattern
matching purposes to make the presentation independent of any particular data structure for
abstract syntax. However, you should continue to see it as abstract syntax since all ambiguity
concerns, etc., have been fixed.

We presume that there are built-
names and numeric constants. As a result
name of the identifier. Similar to get value, num's get value function returns the number's value.
It is not necessary for static type checking to have the latter. We create one or more functions
that accept an inherited attribute and an abstract syntax subtree as parameters and return the
synthesised attributes for each nonterminal.

Table 1: Represented that the Different Expression.

Basics in Compiler Design

The symbol tables for variables and functions are inherited properties when we type check
expressions. The expression's type (int or bool) is given back as a synthesised attribute. We will
allow the type checker function to utilise a notation similar to the concrete syntax for pattern
matching purposes to make the presentation independent of any particular data structure for

yntax. However, you should continue to see it as abstract syntax since all ambiguity

-in methods for extracting characteristics from terminals
. As a result, id contains a method called get name that returns the

name of the identifier. Similar to get value, num's get value function returns the number's value.
It is not necessary for static type checking to have the latter. We create one or more functions

accept an inherited attribute and an abstract syntax subtree as parameters and return the
ttributes for each nonterminal.

1: Represented that the Different Expression.

102 Basics in Compiler Design

The symbol tables for variables and functions are inherited properties when we type check
bool) is given back as a synthesised attribute. We will

allow the type checker function to utilise a notation similar to the concrete syntax for pattern-
matching purposes to make the presentation independent of any particular data structure for

yntax. However, you should continue to see it as abstract syntax since all ambiguity

haracteristics from terminals'variable
, id contains a method called get name that returns the

name of the identifier. Similar to get value, num's get value function returns the number's value.
It is not necessary for static type checking to have the latter. We create one or more functions

accept an inherited attribute and an abstract syntax subtree as parameters and return the

103 Basics in Compiler Design

We display the type-checking function for expressions in Table 1. CheckExp is the name of the
function used to type check expressions. The parameters vtable and ftable respectively provide
the symbol tables for variables and functions. A type error is reported by the function error. After
the error-reporting function reports a type error, the type checker can make an educated guess as
to what the type should have been and return this guess, enabling type checking to continue for
the remainder of the programme. This allows the type checker to continue and report more than
one error. However, if this assumption is incorrect, it may lead to the reporting of erroneous type
errors in the future. Therefore, all type error messages should be regarded with a grain of salt
except the first one.

• The type of a variable is found by looking its name up in the symbol table for
variables. If the variable is not found in the symbol table, the lookupfunction returns
the special value unbound. When this happens, an error is reported and the type
checker arbitrarily guesses that the type is int. Otherwise, it returns the type returned
by lookup.

• A plusexpression requires both arguments to be integers and has an integer result.

• Comparison requires that the arguments have the same type. In either case, the result
is a Boolean.

• In a conditional expression, the condition must be of type bool and the two branches
must have identical types. The result of a condition is the value of one of the
branches, so it has the same type as these. If the branches have different types, the
type checker reports an error and arbitrarily chooses the type of the then-branch as its
guess for the type of the whole expression.

• At a function call, the function name is looked up in the function environment to find
the number and types of the arguments as well as the return type. The number of
arguments to the call must coincide with the expected number and their types must
match the declared types. The resulting type is the return type of the function. If the
function name is not found in ftable, an error is reported and the type checker
arbitrarily guesses the result type to be int.

• A letexpression declares a new variable, the type of which is that of the expression
that defines the value of the variable. The symbol table for variables is extended
using the function bind, and the extended table is used for checking the
bodyexpression and finding its type, which in turn is the type of the whole
expression. A let-expression cannot in itself be the cause of a type error (though its
parts may), so no testing is done.

Since CheckExp mentions the nonterminal Exps and its related type-checking function CheckExps,
we have included CheckExps. CheckExps builds a list of the types of expressions in the expression
list. The notation is taken from SML: A list is written in square brackets with commas between
the elements. The operator :: adds an element to the front of a list.

Type Checking a Program

A program is a list of functions and is deemed type correct if all the functions are type correct,
and no two function definitions are defining the same function name. Additionally, there must be
a function called main with one integer argument and integer result. Since all functions are
mutually recursive, each of these must be type checked using a symbol table where all functions
are bound to their type. This requires two passes over the list of functions: One to build the

104 Basics in Compiler Design

symbol table and one to check the function definitions using this table. Hence, we need two
functions operating over Funs and two functions operating over Fun.

We have already seen one of the latter, CheckFun. The other, GetFun, returns the pair of the
function’s declared name and type, which consists of the types of the arguments and the type of
the result. It uses an auxiliary function GetTypes to find the types of the arguments. The two
functions for the syntactic category Funs are GetFuns, which builds the symbol table and checks
for duplicate definitions, and CheckFuns, which calls CheckFun for all functions. These functions
and the main function CheckProgram, which ties the loose ends, are shown in figure 6.4. This
completes type checking of our small example language.

Advanced Type Checking

Despite its simplicity, our example language does not cover every facet of type verification.
Below is a list of some additional features along with short descriptions of how they may be
handled.

• Assignments:

It is necessary to confirm that the type of something like the value matches the specified variety
of the variable before assigning a value to a variable. Before assigning a value to a variable or
after it has been assigned, certain compilers may check to see whether the variable could be
utilised. Even if they are not strictly type errors, such performance is probably not desired.
However, since it depends on non-structural information, testing for such behaviours requires a
little more involved analysis than the fundamental type checking described in this chapter.

• Data Structures:

A value defined by a data structure could have several components such as a struct, tuple, or
record, or it may be of various kinds at different times. Such constructions need to be type
checked, hence the type checker has to be able to express their types. Consequently, a data
structure that specifies complicated types may be required by the type checker. This could
resemble the database structure used for declaring abstract syntax trees. It's important to evaluate
the accuracy of operations that create or deconstruct organized data. This may be accomplished
in some kind of manner similar to how function calls are verified if each operation on complex
information has well-defined types for both its argument and its result.

• Overloading:

The term "overloading" involves the usage of the same name for many actions across several
kinds. In the preceding language, when = was used to comparing both integers and Booleans, we
saw a straightforward illustration of this. Arithmetic operators like + and are defined over
integers, floating point numbers, and maybe other kinds of numbers throughout many different
languages. All potential situations may be tested one at a moment, much as in our example, if
these operators are preset and therefore only cover a limited set of circumstances.

To do this, the operator's several instances must have distinct argument types. The parameter of
the text stream alone cannot be employed to choose the appropriate operator, for instance, if the
function read is specified to read either integers or floating point numbers from a text stream. As
a result, the type checker must transmit the anticipated type of each argument as an inherited
property so that it may be used to choose the relevant instance of the overloaded operator
potentially in conjunction with the varieties of the arguments. Due to a lack of information, it

105 Basics in Compiler Design

may not always be able to send down an anticipated kind. If the type checker is unable to choose
a unique operator due to this or another issue, it may indicate "unresolved overloading" as a type
error or select a default instance.

Type Conversion

A language may have operators for converting a value of one type to a value of another type, e.g.
an integer to a floating-point number. Sometimes these operators are explicit in the program and
hence easy to check. However, many languages allow implicit conversion of integers to floats,
such that, for example, 3 + 3.12 is well-typed with the implicit assumption that the integer is
converted to a float before the addition. This can be handled as follows: If the type checker
discovers that the arguments to an operator do not have the correct type, it can try to convert one
or both arguments to see if this helps. If there is a small number of predefined legal conversions,
this is no major problem. However, a combination of user-defined overloaded operators and
user-defined types with conversions can make the type-checking process quite difficult, as the
information needed to choose correctly may not be available at compiletime. This is typically the
case in object-oriented languages, where method selection is often done at runtime. We will not
go into details about how this can be done.

Polymorphism/Generic Types

Some languages allow a function to be polymorphic or generic, that is, to be defined over a large
class of similar types, e.g. over all arrays no matter what the types of the elements are. A
function can explicitly declare which parts of the type are generic/polymorphic or this can be
implicit. The type checker can insert the actual types at every use of the generic/polymorphic
function to create instances of the generic/polymorphic type. This mechanism is different from
overloading as the instances will be related by a common generic type and because a
polymorphic or generic function can be instantiated by any type, not just by a limited list of
declared alternatives as is the case with overloading.

Implicit Types

Some languages require programs to be well-typed but do not require explicit type declarations
for variables or functions. For such to work, a type inference algorithm is used. A type inference
algorithm gathers information about the uses of functions and variables and uses this information
to infer the types of these. If there are inconsistent uses of a variable, a type error is reported.

106 Basics in Compiler Design

CHAPTER 13

INTERMEDIATE-CODE GENERATION

Dr. Uthama Kumar A

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- uthamakumar.a@jainuniversity.ac.in

The final goal of a compiler is to get programs written in a high-level language to run on a
computer. This means that, eventually, the program will have to be expressed as machine code
which can run on the computer. This does not mean that we need to translate directly from the
high-level abstract syntax to machine code. Many compilers use a medium-level language as a
stepping-stone between the high-level language and the very low-level machine code. Such
stepping-stone languages are called intermediate codes. Apart from structuring the compiler into
smaller jobs, using an intermediate language has other advantages:

A. If the compiler needs to generate code for several different machinearchitectures, only
one translation to intermediate code is needed. Only the translation from intermediate
code to machine language (i.e., the back-end) needs to be written in several versions.

B. If several high-level languages need to be compiled, only the translation to intermediate
code needs to be written for each language. They can all share the backend, i.e., the
translation from intermediate code to machine code.

C. Instead of translating the intermediate language to machine code, it can be interpreted by
a small program written in machine code or a language for which a compiler or
interpreter already exists.

The advantage of using an intermediate language is most obvious if many languages are to be
compiled by many machines. If the translation is done directly, the number of compilers is equal
to the product of the number of languages and the number of machines.If a common intermediate
language is used, one front-end i.e., a compiler to intermediate code is needed for every language
and one back-end interpreter or code generator is needed for each machine, making the total
number of frontends and back-ends equal to the sum of the number of languages and the number
of machines. If an interpreter for an intermediate language is written in a language for which
there already exist implementations for the target machines, the same interpreter can be
interpreted or compiled for each machine. This way, there is no need to write a separate back-end
for each machine. The advantages of this approach are:

A. No actual back-end needs to be written for each new machine, as long as the machine “I”
is equipped with an interpreter or compiler for the implementation language of the
interpreter for the intermediate language.

B. A compiled program can be distributed in a single intermediate form for all machines, as
opposed to shipping separate binaries for each machine.

107 Basics in Compiler Design

C. The intermediate form may be more compact than machine code. This saves space both
in distribution and on the machine that executes the programs (though the latter is
somewhat offset by requiring the interpreter to be kept in memory during execution).

The disadvantage is speed: Interpreting the intermediate form will in most cases be a lot slower
than executing translated code directly. Nevertheless, the approach has seen some success, e.g.,
with Java. Some of the speed penalty can be eliminated by translating the intermediate code to
machine code immediately before or during the execution of the program. This hybrid form is
called just-in-time compilation and is often used for executing the intermediate code for Java.
We will this book, however, focus mainly on using the intermediate code for traditional
compilation, where the intermediate form will be translated to machine code by a back-end of the
compiler.

Choosing an Intermediate language

An intermediate language should, ideally, have the following properties:

A. It should be easy to translate from a high-level language to an intermediate language.
This should be the case for a wide range of different source languages.

B. It should be easy to translate from the intermediate language to machine code. This
should be true for a wide range of different target architectures.

C. The intermediate format should be suitable for optimizations.

The first two of these attributes may be a little challenging to combine. This should be pretty
similar to the language that will serve as the source of translation from a high-level language. For
more than a limited percentage of closely related languages, it could be challenging to do this. A
high-level intermediate language also adds to the workload on the backends. Back-ends may be
simple to create in a low-level intermediate language, but front-ends are constrained to a greater
extent. Although this is normally less of an issue than the one with front-ends, since machines
are typically more equivalent than high-level languages, a low-level intermediate vocabulary
may not match all machines equally.

Having two intermediate levels of which one is quite a high level and the other is fairly low level
for the front-ends and back-ends is a possible option that might ease the translation load but does
not solve the other issues. The translation between these two discrete formats is subsequently
performed by a single shared translator. It makes sense to do as much optimization on the
intermediate format as feasible when it is shared by several compilers. By doing so, the work of
creating effective optimizations is done just once rather than for each compiler.

The "granularity" is another factor that must be considered when selecting an intermediate
language: In the intermediate language, should an operation be equated to a considerable amount
of effort or little work? The first of these methods may also be used for compiling. It is often
employed when the intermediate language is interpreted since it covers the costs the cost of
decoding instructions across a broader quantity of labor. In this situation, each operation in the
intermediate code is generally converted into a series of instructions in machine code. There are
often a lot of distinct medium operations when coarse-grained intermediate code is employed.

The alternative strategy is to make each operation in the intermediatecode as brief as feasible.
This indicates that numerous intermediate-code operations may be integrated into one production
line or that each intermediate-code action is normally translated into a single instruction in

machinecode. Since each machine
code instructions, the latter can, to some extent, become automated. The code generator may
search for sequences that correspond to machine
converting intermediate representation to machine code. This may be made into a combinatorial
optimization challenge where the least
machine-code step.

Figure

The Intermediate Language

As it is best suited to express the methods we wish to explore, we have decided
somewhat low-level, fine-grained intermediate lang
function call translation until the body of a function or procedure in a real programme
corresponds to a "programme" in our intermediate language for the tim
language originally treats function calls as bas
demonstrates the grammar for the intermediate language. An ordered list of instructions is a
programme. The guidelines are:

Basics in Compiler Design

machinecode. Since each machine-code directive may be thought of as a series of intermediate
n, to some extent, become automated. The code generator may

search for sequences that correspond to machine-code as display in Figure 1
converting intermediate representation to machine code. This may be made into a combinatorial

ion challenge where the least-cost solution is obtained by giving a cost to each

Figure 1: Represented the Intermediate Language.

The Intermediate Language

As it is best suited to express the methods we wish to explore, we have decided
grained intermediate language in this chapter. We won't address

function call translation until the body of a function or procedure in a real programme
corresponds to a "programme" in our intermediate language for the time being. The intermediate
language originally treats function calls as basic actions for the same reason.
demonstrates the grammar for the intermediate language. An ordered list of instructions is a

108 Basics in Compiler Design

code directive may be thought of as a series of intermediate-
n, to some extent, become automated. The code generator may

1 operations after
converting intermediate representation to machine code. This may be made into a combinatorial

cost solution is obtained by giving a cost to each

Intermediate Language.

As it is best suited to express the methods we wish to explore, we have decided to use a
We won't address

function call translation until the body of a function or procedure in a real programme
e being. The intermediate

ic actions for the same reason. Grammar
demonstrates the grammar for the intermediate language. An ordered list of instructions is a

A. A label. This has no effect but serves only to mark the position in the program as a target
for jumps.

B. An assignment of an atomic expression that is constant or variable to a variable.

C. A unary operator is applied to an atomic expression, with the result stored in a variable
binary operator is applied to a variable and an atomic expression, with the result stored in
a variable.

D. A transfer from memory to a variable. The memory location is an atomic expression.

E. A transfer from a variable to memory. The memory location is an

F. A jump to a label.

G. A conditional selection between jumps to two labels. The condition is found by
comparing a variable with an atomic expression by using a relational operator (=, 6=,
≥).

H. A function call. The arguments to the functi
to a variable. This instruction is used even if there is no actual result i.e. if a procedure is
called instead of a function), in which case the result variable is a dummy variable.

Syntax Directed Translation

We will generate code using translation functions for each syntactic category, similar to the
functions we used for interpretation and type checking. We generate code for a syntactic
construct independently of the constructs around it, except that the
function may hold information about the context such as symbol tables
translation function may in addition to the generated code
generated code interfaces with its context such
closely follows the syntactic structure of the program, it is called syntax
Given that translation of a syntactic construct is mostly independent of the surrounding and
enclosed syntactic constructs, we might miss opportunities to exploit synergies between these
and, hence, generate less than optimal code. We will try to remedy this in later chapters by using
various optimization techniques as mention Figure

Figure 2: Represented t

In syntax-directed translation, along with the grammar we associate some informal notations and
these notations are called semantic rules. So we can say that,

Basics in Compiler Design

no effect but serves only to mark the position in the program as a target

An assignment of an atomic expression that is constant or variable to a variable.

applied to an atomic expression, with the result stored in a variable
applied to a variable and an atomic expression, with the result stored in

A transfer from memory to a variable. The memory location is an atomic expression.

A transfer from a variable to memory. The memory location is an atomic expression.

A conditional selection between jumps to two labels. The condition is found by
comparing a variable with an atomic expression by using a relational operator (=, 6=,

A function call. The arguments to the function call are variables and the result is assigned
to a variable. This instruction is used even if there is no actual result i.e. if a procedure is
called instead of a function), in which case the result variable is a dummy variable.

We will generate code using translation functions for each syntactic category, similar to the
functions we used for interpretation and type checking. We generate code for a syntactic
construct independently of the constructs around it, except that the parameters of a translation

information about the context such as symbol tables and the result
addition to the generated code hold information about how the

de interfaces with its context such as which variables it uses. Since the translation
closely follows the syntactic structure of the program, it is called syntax-directed translation.
Given that translation of a syntactic construct is mostly independent of the surrounding and

tic constructs, we might miss opportunities to exploit synergies between these
and, hence, generate less than optimal code. We will try to remedy this in later chapters by using

as mention Figure 2.

Figure 2: Represented the A Simple Expression Language

directed translation, along with the grammar we associate some informal notations and
these notations are called semantic rules. So we can say that,

109 Basics in Compiler Design

no effect but serves only to mark the position in the program as a target

An assignment of an atomic expression that is constant or variable to a variable.

applied to an atomic expression, with the result stored in a variable. A
applied to a variable and an atomic expression, with the result stored in

A transfer from memory to a variable. The memory location is an atomic expression.

atomic expression.

A conditional selection between jumps to two labels. The condition is found by
comparing a variable with an atomic expression by using a relational operator (=, 6=, ≤ or

on call are variables and the result is assigned
to a variable. This instruction is used even if there is no actual result i.e. if a procedure is
called instead of a function), in which case the result variable is a dummy variable.

We will generate code using translation functions for each syntactic category, similar to the
functions we used for interpretation and type checking. We generate code for a syntactic

parameters of a translation
and the result of a

hold information about how the
. Since the translation

directed translation.
Given that translation of a syntactic construct is mostly independent of the surrounding and

tic constructs, we might miss opportunities to exploit synergies between these
and, hence, generate less than optimal code. We will try to remedy this in later chapters by using

he A Simple Expression Language

directed translation, along with the grammar we associate some informal notations and

110 Basics in Compiler Design

Grammar + semantic rule = SDT (syntax directed translation)

• Depending on the kind of attribute, every non-terminal in syntactic directed
translation may get one, many, or even no attributes. The semantic rules connected to
the production rule assess the value of these qualities.

• In the semantic rule, an attribute is referred to as VAL, and it may include a
complicated record, a string, an integer, or a memory address.

• When a construct is encountered in a programming language, Syntax Directed
Translation (SDT) translates it following the semantic rules specified in that specific
programming language in Table 1.

Table 1: Represented the Semantic Rules.

Sr.
No.

Production Semantic Rules

1. E → E + T
E.val := E.val +
T.val

2. E → T E.val := T.val

3. T → T * F
T.val := T.val +
F.val

4. T → F T.val := F.val

5. F → (F) F.val := F.val

6. F → num F.val := num.lexval

Syntax Directed Translation Scheme

• The grammar used by the Syntax Directed Translation system is context-free.

• To assess the order of semantic rules, the syntax-directed translation scheme is
utilized.

• In the translation scheme, the productions' right side contains the semantic rules.

• Enclosed within brackets, an action's execution position is shown in Table 2. It is
inscribed on the production's right side.

Table 2: Represented the Syntax Directed Translation Scheme.

Sr. No. Production Semantic Rules

111 Basics in Compiler Design

1. S → E $ { printE.VAL }

2. E → E + E {E.VAL := E.VAL + E.VAL }

3. E → E * E {E.VAL := E.VAL * E.VAL }

4. E → (E) {E.VAL := E.VAL }

5. E → I {E.VAL := I.VAL }

6. I → I digit {I.VAL := 10 * I.VAL + LEXVAL }

7. I → digit { I.VAL:= LEXVAL}

Implementation of Syntax Directed Translation

Syntax direct translation is implemented by constructing a parse tree and performing the actions
in left-to-right depth-first order as mentioned in Table 3.SDT is implementing by parse the input
and produce a parse tree as a result.

Table 3: Represented that the Implementation of Syntax Directed Translation.

Production Semantic Rules

S → E $ { printE.VAL }

E → E + E {E.VAL := E.VAL + E.VAL }

E → E * E {E.VAL := E.VAL * E.VAL }

E → (E) {E.VAL := E.VAL }

E → I {E.VAL := I.VAL }

I → I digit {I.VAL := 10 * I.VAL + LEXVAL }

I → digit { I.VAL:= LEXVAL}

Intermediate Code

Intermediate code is used to translate the source code into the machine code. Intermediate code
lies between the high-level language and the machine language. The block diagram is display in
Figure 3.

Figure 3: Represented the

• A complete native compiler is needed for every new machine if the
converts source code into machine code without producing intermediate code.

• The intermediate code ensures that the analysis component is the same for all
compilers, eliminating the need for a complete compiler for each system.

• The semantic analyser
intermediate code generator. An annotated syntax tree is the only kind of input it
accepts.

• The second step of compiler generation is modified
using the intermediate code.

Postfix Notation

• If the provided language is expressions, postfix notation is a helpful type of
intermediate code.

• Suffix notation and reverse polish are other names for postfix notation.

• A syntax tree is represented linearly using post

• Any phrase may be stated clearly and without parentheses in the postfix notation.

• The standard (infix) approach to express the product of x and y is as follows: x * y.
However, in the postfix notation, the operator is written as xy * at the r

• The operator comes after the operand in postfix notation.

Basics in Compiler Design

: Represented the Position of the Intermediate Code Generator.

A complete native compiler is needed for every new machine if the
converts source code into machine code without producing intermediate code.

The intermediate code ensures that the analysis component is the same for all
compilers, eliminating the need for a complete compiler for each system.

analyser phase and its predecessor phase provide input to the
intermediate code generator. An annotated syntax tree is the only kind of input it

The second step of compiler generation is modified following the target machine
intermediate code.

If the provided language is expressions, postfix notation is a helpful type of

Suffix notation and reverse polish are other names for postfix notation.

A syntax tree is represented linearly using postfix notation.

Any phrase may be stated clearly and without parentheses in the postfix notation.

The standard (infix) approach to express the product of x and y is as follows: x * y.
However, in the postfix notation, the operator is written as xy * at the r

The operator comes after the operand in postfix notation.

112 Basics in Compiler Design

Intermediate Code Generator.

compiler directly
converts source code into machine code without producing intermediate code.

The intermediate code ensures that the analysis component is the same for all
compilers, eliminating the need for a complete compiler for each system.

phase and its predecessor phase provide input to the
intermediate code generator. An annotated syntax tree is the only kind of input it

the target machine

If the provided language is expressions, postfix notation is a helpful type of

Suffix notation and reverse polish are other names for postfix notation.

Any phrase may be stated clearly and without parentheses in the postfix notation.

The standard (infix) approach to express the product of x and y is as follows: x * y.
However, in the postfix notation, the operator is written as xy * at the right end.

Syntax Directed Translation in Compiler Design

As shown in the Figure, the parser employs a CFG (Context

string and provide output for the next stage of

tree might be the output. Syntax Directed Translation is now used to interleave semantic

analysis with the compiler's syntax analysis step.

stream, construct the parse tree, and then traverse the tree as necessary to assess the semantic

rules at the parse tree nodes, using both syntax

evaluation of the semantic rules may result in the creation of code, the saving of data

symbol table, the issuance of error messages, or any other actions. The outcome of evaluating

the semantic rules is the translation of the token stream.

Figure 4: Represented the Syntax Directed Translation in Compiler Design

Syntax Directed Translation which display in Figure 4
that facilitate semantic analysis. SDT involves passing information bottom
to the parse tree in form of attributes attached to the nodes. Syntax
use:

i. Lexical values of nodes,

ii. Constants

iii. Attributes associated with the non

The general approach to Syntax
and compute the values of attributes at the nodes
many cases, translation can be done during parsing without building an explicit tree. For
example:

E ���� E+T | T

Basics in Compiler Design

Syntax Directed Translation in Compiler Design

Figure, the parser employs a CFG (Context-free-Grammar) to check the input

string and provide output for the next stage of the compiler. An abstract syntax tree or a parse

tree might be the output. Syntax Directed Translation is now used to interleave semantic

ompiler's syntax analysis step. We conceptually analyses

e tree, and then traverse the tree as necessary to assess the semantic

rules at the parse tree nodes, using both syntax-directed definition and translation methods. The

evaluation of the semantic rules may result in the creation of code, the saving of data

symbol table, the issuance of error messages, or any other actions. The outcome of evaluating

the semantic rules is the translation of the token stream.

: Represented the Syntax Directed Translation in Compiler Design

which display in Figure 4 has augmented rules to the grammar
that facilitate semantic analysis. SDT involves passing information bottom-up and/or top
to the parse tree in form of attributes attached to the nodes. Syntax-directed translation rule

Lexical values of nodes,

Attributes associated with the non-terminals in their definitions.

The general approach to Syntax-Directed Translation is to construct a parse tree or syntax tree
and compute the values of attributes at the nodes of the tree by visiting them in some order. In
many cases, translation can be done during parsing without building an explicit tree. For

113 Basics in Compiler Design

Grammar) to check the input

the compiler. An abstract syntax tree or a parse

tree might be the output. Syntax Directed Translation is now used to interleave semantic

analyses the input token

e tree, and then traverse the tree as necessary to assess the semantic

directed definition and translation methods. The

evaluation of the semantic rules may result in the creation of code, the saving of data in a

symbol table, the issuance of error messages, or any other actions. The outcome of evaluating

: Represented the Syntax Directed Translation in Compiler Design

has augmented rules to the grammar
up and/or top-down

directed translation rules

Directed Translation is to construct a parse tree or syntax tree
of the tree by visiting them in some order. In

many cases, translation can be done during parsing without building an explicit tree. For

114 Basics in Compiler Design

T ���� T*F | F

F ���� INTLIT

This is a grammar to syntactically validate an expression having additions and multiplications
in it. Now, to carry out semantic analysis we will augment SDT rules to this grammar, pass
some information up the parse tree and check for semantic errors, if any. In this example, we
will focus on the evaluation of the given expression, as we don’t have any semantic assertions
to check in this very basic example.

E � E+T { E.val = E.val + T.val } PR#1

E � T { E.val = T.val } PR#2

T � T*F { T.val = T.val * F.val } PR#3

T � F { T.val = F.val } PR#4

F � INTLIT { F.val = INTLIT.lexval } PR#5

For understanding translation rules further, we take the first SDT augmented to [E -> E+T]
production rule. The translation rule in consideration has “val” as an attribute for both the non-
terminals E & T. Right-hand side of the translation rule corresponds to attribute values of the
right-side nodes of the production rule and vice-versa. Generalizing, SDT are augmented rules
to a CFG that associate:

i. Set of attributes to every node of the grammar,
ii. A set of translation rules to every production rule using attributes, constants, and

lexical values.

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse tree corresponding
to S would be:

To evaluate translation rules, we can employ one depth-first search traversal on the parse tree.
This is possible only because SDT rules don’t impose any specific order on evaluation until
children’s attributes are computed before parents for a grammar having all synthesized
attributes. Otherwise, we would have to figure out the best-suited plan to traverse through the
parse tree and evaluate all the attributes in one or more traversals. For better understanding, we

115 Basics in Compiler Design

will move bottom-up in the left to right fashion for computing the translation rules of our
example shown in Figure 5.

Figure 5: Represented the Semantic Analysis.

The above diagram shows how semantic analysis could happen. The flow of information
happens bottom-up and all the children’s attributes are computed before parents, as discussed
above. Right-hand side nodes are sometimes annotated with subscript 1 to distinguish between
children and parents.

Additional Information

Synthesized Attributes are such attributes that depend only on the attribute values of children
nodes. Thus [E -> E+T { E.val = E.val + T.val }] has a synthesized attribute val
corresponding to node E. If all the semantic attributes in an augmented grammar are
synthesized, one depth-first search traversal in any order is sufficient for the semantic analysis
phase. Inherited Attributes are such attributes that depend on parent and/or sibling’s attributes.
Thus [Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val }], where E & Ep are the same
production symbols annotated to differentiate between parent and child, has an inherited
attribute val corresponding to node T.

S-attributed and L-attributed SDTs in Syntax Directed Translation

Before coming up with S-attributed and L-attributed SDTs, here is a brief intro to Synthesized
or Inherited attributes

Types of Attributes:

Attributes may be of two types – Synthesized or Inherited.

i. Synthesized Attributes:

A Synthesized attribute is an attribute of the non-terminal on the left-hand side of a production.
Synthesized attributes represent information that is being passed up the parse tree. The
attribute can take value only from its children (Variables in the RHS of the production).For eg.
let’s say A -> BC is a production of a grammar, and A’s attribute is dependent on B’s attributes
or C’s attributes then it will be a synthesized attribute.

ii. Inherited attributes:

An attribute of a nonterminal on the right
attribute. The attribute can take value either from its parent or from its siblin
LHS or RHS of the production.For example, let’s say A
and B’s attribute is dependent on A’s attributes or C’s attributes then it will be
attribute.Now, let’s discuss S-attributed and L

iii. S-attributed SDT :

E. If an SDT uses only synthesized attributes, it is called a

F. S-attributed SDTs are evaluated in bottom
nodes depend upon the values of the child nodes.

G. Semantic actions are placed in

iii. L-attributed SDT:

B. If an SDT uses both synthesized attributes and
that inherited attribute
attributed SDT.

C. Attributes in L-attributed SDTs are evaluated by depth
parsing manner.

D. Semantic actions are placed anywhere in RHS.For example,

A -> XYZ {Y.S = A.S, Y.S = X.S, Y.S = Z.S}
and Y.S = X.S are allowed but Y.S = Z.S violates the L
is inheriting the value from its right sibling

Note – If a definition is S-attributed, then it is also L

Figure 6: Display that the Grammar of Different Attributes.

Example – Consider the given below SDT.

P1: S ->MN {S.val=

P2: M ->PQ {M.val = P.val * Q.val and P.val =Q.val}

• Select the correct option.

• Both P1 and P2 are S attributed.

Basics in Compiler Design

inal on the right-hand side of a production is called an inherited
attribute. The attribute can take value either from its parent or from its siblings

.For example, let’s say A -> BC is a production of a grammar
and B’s attribute is dependent on A’s attributes or C’s attributes then it will be

attributed and L-attributed SDT.

If an SDT uses only synthesized attributes, it is called an S-attributed SDT.

attributed SDTs are evaluated in bottom-up parsing, as the values of the parent
nodes depend upon the values of the child nodes.

Semantic actions are placed in the rightmost place of RHS.

If an SDT uses both synthesized attributes and inherited attributes with a restriction
that inherited attributes can inherit values from left siblings only, it is called a

attributed SDTs are evaluated by depth-first and left

are placed anywhere in RHS.For example,

> XYZ {Y.S = A.S, Y.S = X.S, Y.S = Z.S} is not an L-attributed grammar since Y.S = A.S
and Y.S = X.S are allowed but Y.S = Z.S violates the L-attributed SDT definition as attributed

s right sibling, which display in Figure 6.

attributed, then it is also L-attributed but NOT vice-versa.

: Display that the Grammar of Different Attributes.

Consider the given below SDT.

>MN {S.val= M.val + N.val}

>PQ {M.val = P.val * Q.val and P.val =Q.val}

Select the correct option.

P1 and P2 are S attributed.

116 Basics in Compiler Design

hand side of a production is called an inherited
gsvariables in the

> BC is a production of a grammar
and B’s attribute is dependent on A’s attributes or C’s attributes then it will be an inherited

attributed SDT.

up parsing, as the values of the parent

inherited attributes with a restriction
can inherit values from left siblings only, it is called an L-

first and left-to-right

attributed grammar since Y.S = A.S
attributed SDT definition as attributed

versa.

: Display that the Grammar of Different Attributes.

117 Basics in Compiler Design

• P1 is S attributed and P2 is L-attributed.

• P1 is L attributed but P2 is not L-attributed.

• None of the above

Explanation:

The correct answer is option C as, In P1, S is a synthesized attribute and in L-attribute
definition synthesized is allowed. So P1 follows the L-attributed definition. But P2 doesn’t
follow L-attributed definition as P is depending on Q which is RHS to it.

118 Basics in Compiler Design

CHAPTER 14

RUNTIME ENVIRONMENTS IN COMPILER DESIGN

Dr. Thirukumaran Subbiramani

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- s.thirukumaran@jainuniversity.ac.in

A translation needs to relate the static source text of a program to the dynamic actions that

must occur at runtime to implement the program. The program consists of names for

procedures, identifiers etc., that require mapping with the actual memory location at runtime.

The runtime environment is a state of the target machine, which may include software

libraries, environment variables, etc., to provide services to the processes running in the

system.

Source Language Issues:

A programme is made up of procedures, and in its most basic form, a procedure definition is a

declaration that links a statement with a procedure name and body of the procedure. Activation

of the process is what is meant by every time a procedure is carried out. The stages that are

included in the execution of the operation make up the life of an activation. If "a" and "b" are

two procedures, then when one is called after the other, or if they are nested, their activations

won't overlap nested procedures. If a fresh activation of the same operation starts before a

previous activation of the same procedure has finished, the procedure is recursive. The way

control enters and exits activations is shown using an activation tree. Activation trees'

characteristics include:

• Every node shows how a process has been activated.

• The root displays the primary function's activation.

• If and only if control flows from process x to procedure y, then the node for
procedure "x" is the parent of node for procedure "y."

main() {

Int n;

readarray ();

 quicksort (1,n);

}

Quicksort (int m, int n) {

Inti= partition(m,n);

 quicksort(m,i-1);

 quicksort(i+1,n);

}

The activation tree for this program will be

Figure 1: Represented that the

First main function is root then
partition and quicksort again. The flow of control in a program corresponds to a pre
depth-first traversal of the activation tree which

Control Stack and Activation Records

Control stack or runtime stack is used to keep track of the live procedure activations i.e the
procedures whose execution ha
stack when it is called (activation begins) and it is popped when it returns (activation ends).
Information needed by a single execution of a procedure is managed using an activation record
or frame. When a procedure is called, an activation record is pushed into the stac
as the control returns to the caller function the activation record is popped.

A general activation record consist

• Local variables: hold the data that is local to the execution of the procedure.

• Temporary values:

• Machine status: holds the information about the status of the machine just before
the function call.

• Access link (optional):

• Control link (optional):

Basics in Compiler Design

Inti= partition(m,n);

1);

quicksort(i+1,n);

The activation tree for this program will be shown in Figure 1:

: Represented that the Activation Tree.

s root then the main calls read array and quicksort. Quicksort in turn calls
partition and quicksort again. The flow of control in a program corresponds to a pre

activation tree which starts at the root.

Records

Control stack or runtime stack is used to keep track of the live procedure activations i.e the
procedures whose execution has not been completed. A procedure name is pushed onto the

called (activation begins) and it is popped when it returns (activation ends).
Information needed by a single execution of a procedure is managed using an activation record
or frame. When a procedure is called, an activation record is pushed into the stac
as the control returns to the caller function the activation record is popped.

A general activation record consists of the following things:

hold the data that is local to the execution of the procedure.

: stores the values that arise in the evaluation of an expression.

holds the information about the status of the machine just before

(optional): refers to non-local data held in other activation records.

(optional): points to the activation record of caller.

119 Basics in Compiler Design

and quicksort. Quicksort in turn calls
partition and quicksort again. The flow of control in a program corresponds to a pre-order

Control stack or runtime stack is used to keep track of the live procedure activations i.e the
not been completed. A procedure name is pushed onto the

called (activation begins) and it is popped when it returns (activation ends).
Information needed by a single execution of a procedure is managed using an activation record
or frame. When a procedure is called, an activation record is pushed into the stack and as soon

hold the data that is local to the execution of the procedure.

stores the values that arise in the evaluation of an expression.

holds the information about the status of the machine just before

local data held in other activation records.

120 Basics in Compiler Design

• Return value: used by the called procedure to return a value to calling procedure

• Actual parameters

Storage Allocation Techniques

i. Static Storage Allocation

• For any program, if we create a memory at compile time, memory will be created
in the static area.

• For any program, if we create a memory at compile-time only, memory is created
only once.

• It doesn’t support dynamic data structure i.e memory is created at compile-time and
deallocated after program completion.

• The drawback with static storage allocation is recursion is not supported.

• Another drawback is the size of data should be known at compile time

Eg- FORTRAN was designed to permit static storage allocation.

ii. Stack Storage Allocation

• Storage is organized as a stack and activation records are pushed and popped as
activation begins and end respectively. Locals are contained in activation records
so they are bound to fresh storage in each activation.

• Recursion is supported in stack allocation

iii. Heap Storage Allocation

• Memory allocation and deallocation can be done at any time and any place
depending on the requirement of the user.

• Heap allocation is used to dynamically allocate memory to the variables and claim
it back when the variables are no more required.

• Recursion is supported.

iv. PARAMETER PASSING:

The communication medium among procedures is known as parameter passing. The values of
the variables from a calling procedure are transferred to the called procedure by some
mechanism.

v. Basic Terminology

• R-value: The value of an expression is called its r-value. The value contained in a
single variable also becomes an r-value if it appears on the right side of the
assignment operator. R-value can always be assigned to some other variable.

• L-value: The location of the memory(address) where the expression is stored is
known as the l-value of that expression. It always appears on the left side of the
assignment operator.

121 Basics in Compiler Design

• Formal Parameter: Variables that take the information passed by the caller
procedure are called formal parameters. These variables are declared in the
definition of the called function.

• Actual Parameter: Variables whose values and functions are passed to the called
function are called actual parameters. These variables are specified in the function
call as arguments.

Different ways of passing the parameters to the procedure:

• Call by Value: In call by value the calling procedure passes the r-value of the
actual parameters and the compiler puts that into called procedure’s activation
record. Formal parameters hold the values passed by the calling procedure, thus
any changes made in the formal parameters do not affect the actual parameters.

• Call by Reference: In call by reference the formal and actual parameters refers to
the same memory location. The l-value of actual parameters is copied to the
activation record of the called function. Thus the called function has the address of
the actual parameters. If the actual parameters do not have a l-value (eg- i+3) then
it is evaluated in a new temporary location and the address of the location is passed.
Any changes made in the formal parameter are reflected in the actual parameters
because changes are made at the address.

• Call by Reference: In call by reference the formal and actual parameters refers to
the same memory location. The l-value of actual parameters is copied to the
activation record of the called function. Thus the called function has the address of
the actual parameters. If the actual parameters do not have a l-value (eg- i+3) then
it is evaluated in a new temporary location and the address of the location is passed.
Any changes made in the formal parameter are reflected in the actual parameters
because changes are made at the address.

• Call by Name In call by name the actual parameters are substituted for formals in
all the places formals occur in the procedure. It is also referred to as lazy evaluation
because evaluation is done on parameters only when needed.

Generating Code from Expressions

We'll utilize Grammar 7.2's example of a basic expressions language as our starting point for
translation. Once again, we've left the list of unary and binary operators undefined but we're
assuming that it contains every operator that the expression language uses. We presum that the
name of an operator in the expression language is translated into the name of the equivalent
operator in the intermediate language by the function transop. The characteristics of the tokens
unop and binop include the names of the actual operators, and the function getopname may
access these attributes. We must choose what needs to be done at compile time and what needs to
be done at run time while creating a compiler. The majority of work should be completed at
compile time, but certain tasks must wait until run time since they need real variable values, etc.,
which are not available at compilation time.

We may use language like "the expression is evaluated and the result placed in the variable"
when describing the operation of the translation functions in the sections that follow. This
defines the operations that the code created at compile time does during execution. The notation
used in the translation functions makes it apparent what occurs when even when the written
explanation isn't always 100% clear: Run-time execution of intermediate language code occurs

122 Basics in Compiler Design

while compilation of the remainder takes place. Instructions written in intermediate language
may make references to values constants and register names created at compile time. Italicized
operands are variables in the compiler that hold compile-time values that are put into the
resulting code. These operands are used when instructions have them. For instance, the code
template [place:= v] will produce the code [t14:= 42] if the place has the variable name t14 and v
holds the value 42.

The main challenge when attempting to translate an expression language to an intermediate
language is that the expression language is tree-structured, whereas the intermediate language is
flat, necessitating the storage of each operation's result in a variable as well as each (non-
constant) argument in a variable.

To create new variable names in the intermediate language, we utilise the function newvar.
Every time newvar is used, a variable name that was not previously used is returned. We'll use a
notation akin to the notation to illustrate how a translation function translates phrases.

The translation function has certain noticeable characteristics. The code must be sent back as a
synthesized attribute. Additionally, it must translate the names of the intermediate language's
equivalents of the variables and functions used in the expression language.

This may be accomplished using the vtable and ftable symbol tables, which translate the names
of variables and functions in the expression language into their equivalents in the intermediate
language. For the translation function, the symbol tables are supplied as inherited attributes. The
translation function must make decisions about where to place the values of sub-expressions
using characteristics in addition to these. There are two methods to accomplish this:

A. The parent expression, which selects a place for its value, may receive the location of a
sub-expressions value as a synthesized property.

B. The parent expression may choose where to look for the values of its child's expressions
and may impart this knowledge to those expressions as inherited characteristics.

These are not better than one another. When writing code for variable access, Method 1 has little
benefit since it just has to return the name of the variable containing the value rather than writing
any code. However, this is only effective if the variable isn't modified before the parent
expression uses the value.

This is not always the case, however, as the C expression "x+(x=3)" demonstrates. Expressions
may have side effects. The assignment is not a feature of our expression language, but function
calls are, and they may have unintended consequences.

This issue is not present in Method 2 since no further side effects are possible between the
creation of the expression's value and the execution of the assignment. When the language is
eventually expanded to include assignment statements, the second approach also has a modest
benefit since we can then produce code that calculates the expression result straight into the
target variable rather than having to transfer it from a temporary variable. So, for our translation
function TransExp, which is shown in Figure 2, we will use the second way. The intermediate-
language variable that the expression's result must be saved in is identified by the inherited
attribute location.

Figure 2

Translating Structured Data

So far, the only values we have used are integers and
languages provide floating-point numbers and structured values like arrays, records (structs),
unions, lists or treestructures. We will now look at how these can be translated. We will first look
at floats, then at one-dimensional arrays, multi
structures.

Floating Point Values

Floating-point values are, in a computer, typically stored in a different set of registers than
integers. Apart from this, they are treated the same way we
temporary variables to store intermediate expression results and assume the intermediate
language has binary operators for floating

The register allocator will have to make sure that the temporary variables used
values are mapped to floating-point registers.

For this reason, it may be a good idea to let the intermediate code indicate which temporary
variables hold floats. This can be done by giving them special names or by using a symbol table
to hold type information.

Basics in Compiler Design

Figure 2: Represented the Translating of an Expression

So far, the only values we have used are integers and Booleans. However, most programming
point numbers and structured values like arrays, records (structs),

unions, lists or treestructures. We will now look at how these can be translated. We will first look
imensional arrays, multi-dimensional arrays and finally other data

point values are, in a computer, typically stored in a different set of registers than
integers. Apart from this, they are treated the same way we treat integer values: We use
temporary variables to store intermediate expression results and assume the intermediate
language has binary operators for floating-point numbers.

The register allocator will have to make sure that the temporary variables used for floating
point registers.

For this reason, it may be a good idea to let the intermediate code indicate which temporary
variables hold floats. This can be done by giving them special names or by using a symbol table

123 Basics in Compiler Design

an Expression.

Booleans. However, most programming
point numbers and structured values like arrays, records (structs),

unions, lists or treestructures. We will now look at how these can be translated. We will first look
dimensional arrays and finally other data

point values are, in a computer, typically stored in a different set of registers than
treat integer values: We use

temporary variables to store intermediate expression results and assume the intermediate

for floating-point

For this reason, it may be a good idea to let the intermediate code indicate which temporary
variables hold floats. This can be done by giving them special names or by using a symbol table

Arrays

We extend our example language with one
productions:

Exp → Index

Stat → Index := Exp

Index → id[Exp

The index is an array element, which can be used the same way as a variable, e
expression or as the left part of an assignment statement. We will initially assume that arrays are
zero-based i.e. the lowest index is 0). Arrays can be allocated statically, i.e., at compile
dynamically, i.e., at run-time. In the fir
index 0 is stored is a compile-time constant. In the latter case, a variable will contain the base
address of the array. In either case, we assume that the symbol table for variables binds an arra
name to the constant or variable that holds its base address.

Figure 3: Represented the Translation for One

Most modern computers are byte
means that the index used to access array elements must be multipli
measured in bytes, e.g., 4 or 8, to find the actual offset from the base address. In the
shown in Figure 3, we use 4 for the size of integers. We show only the new parts of t
translation functions for Exp and Stat.

We use a translation function TransIndex for array elements. This returns a pair consisting of the
code that evaluates the address of the array element and the variable that holds this address.
When an array element is used in an expression, the contents o
target variable using a memory-load instruction. When an array element is used on the left
side of an assignment, the right
address using a memory-store instruction.

The address of an array element is calculated by multiplying the index by the size of the
elements and adding this to the base address of the array. Note that

Basics in Compiler Design

We extend our example language with one-dimensional arrays by adding the following

ndex is an array element, which can be used the same way as a variable, e
expression or as the left part of an assignment statement. We will initially assume that arrays are

based i.e. the lowest index is 0). Arrays can be allocated statically, i.e., at compile
time. In the first case, the base address of the array the address at which

time constant. In the latter case, a variable will contain the base
address of the array. In either case, we assume that the symbol table for variables binds an arra
name to the constant or variable that holds its base address.

: Represented the Translation for One-dimensional Arrays.

Most modern computers are byte-addressed, while integers typically are 32 or 64 bits long. This
access array elements must be multiplied by the size of the elements

, e.g., 4 or 8, to find the actual offset from the base address. In the
, we use 4 for the size of integers. We show only the new parts of t

translation functions for Exp and Stat.

We use a translation function TransIndex for array elements. This returns a pair consisting of the
code that evaluates the address of the array element and the variable that holds this address.
When an array element is used in an expression, the contents of the address are

load instruction. When an array element is used on the left
side of an assignment, the right-hand side is evaluated, and the value of this is stored at the

e instruction.

The address of an array element is calculated by multiplying the index by the size of the
elements and adding this to the base address of the array. Note that the base can be e

124 Basics in Compiler Design

dimensional arrays by adding the following

ndex is an array element, which can be used the same way as a variable, either as an
expression or as the left part of an assignment statement. We will initially assume that arrays are

based i.e. the lowest index is 0). Arrays can be allocated statically, i.e., at compile-time, or
st case, the base address of the array the address at which

time constant. In the latter case, a variable will contain the base
address of the array. In either case, we assume that the symbol table for variables binds an array

dimensional Arrays.

addressed, while integers typically are 32 or 64 bits long. This
ed by the size of the elements

, e.g., 4 or 8, to find the actual offset from the base address. In the translation
, we use 4 for the size of integers. We show only the new parts of the

We use a translation function TransIndex for array elements. This returns a pair consisting of the
code that evaluates the address of the array element and the variable that holds this address.

 transferred to the
load instruction. When an array element is used on the left-hand

hand side is evaluated, and the value of this is stored at the

The address of an array element is calculated by multiplying the index by the size of the
base can be either a

125 Basics in Compiler Design

variable or a constant depending on how the array is allocated, see below, but since both are
allowed as the second operator to a binop in the intermediate language, this is no problem.

Allocating Arrays

We've just touched on how arrays are allocated so far. One option, as previously indicated, is
static allocation, in which the baseaddress and indeed the array's size are known at the time of
compilation. Typically, the compiler has a large address space where it may allocate things that
are statically allocated. The new object is simply constructed after the completion of the already
allocated objects when this occurs. There are numerous methods for dynamic allocation. One is
local allocation, where an array is allocated when a method or function is called and deallocated
when it is finished. Usually, this indicates that the element is allocated on a stack and removed
after the process is ended. The base addresses of locally allocated arrays are predictable offsets
from the stack pinnacle or the frame pointer; see chapter 10 and may be derived from this at each
arraylookup if the sizes of the arrays are fixed at build time.

If the widths of these arrays are provided at runtime, however, this does not function. Here, the
base addresses of each array must be stored in a variable. When the array is allocated, the
address is determined and then placed in the relevant variable. This may then be used as stated in
the Trans-Index section above. The variable that will store the baseaddress at runtime will be tied
to the arrayname at build time in the symbol table. The array will continue to exist until the
conclusion of the programme or until it is manually deallocated if dynamic allocation is used
worldwide. In this scenario, a global address space must be accessible for run-time allocation.
This is often handled by the operating system, which manages memory-allocation requirements
from all currently executing processes. Lack of memory may cause this allocation to fail, in
which case the application would either need to crash or release memory elsewhere to make
space. The software itself, which first requests a significant quantity of memory from the
operating system and then manages this itself, is another option for controlling allocation. As a
result, array allocation may be quicker than if an operating system call were required each time
an array was created. In addition, it may enable automated array reclamation via trash collection
for the application.

Translating Declarations

In the translation functions used in this chapter, we have several times required that “The symbol
table must contain. It is the job of the compiler to ensure that the symbol tables contain the
information necessary for translation. When a name (variable, label, type, etc.) is declared, the
compiler must keep in the symbol-table entry for that name the information necessary for
compiling any use of that name. For scalar variables (e.g., integers), the required information is
the intermediate language variable that holds the value of the variable.

For array variables, the information includes the base-address and dimensions of the array. For
records, it is the offsets for each field and the total size. If a type is given a name, the symbol
table must for that name provide a description of the type, such that variables that are declared to
be that type can be given the information they need for their symbol-table entries.

The exact nature of the information that is put into the symbol tables will depend on the
translation functions that use these tables, so it is usually a good idea to write first the translation
functions for uses of names and then translation functions for their declarations.

Example: Simple Local Declarations

We extend the statement language by the following productions:

Stat → Decl ; Stat

Decl → int id

Decl → int id[num]

We can, hence, declare integer variables and one
following statement. An integer variable should be bound to a location in the symbol table, so
this declaration should add such a binding to vtable. An array should
containing its base address.

Furthermore, code must be generated for allocating space for the array. We assume arrays are
heap-allocated and that the intermediate
upwards-growing heap.

The Translation of Simple Declarations

Further Reading

Figure 4: Represented the Translation of Simple Declarations

High-level intermediate languages are often used in functional and logical languages, and they
are frequently converted into lower
code.The Java Virtual Machine is another high
complicated tasks as invoking virtual methods and generating new objects, this langua
single command. JVM's high-level design was selected for

• By breaking up typical complicated processes into single instructions, the code is
made smaller, which cuts down on the amount of time it takes to transmit over the
Internet.

• JVM was designed from the start with interpretation in mind, and the intricate
processes also served to lessen the burden of interpretation.

• A programme in the JVM is validated, or kind of type
interpreted or translated furt

Basics in Compiler Design

Example: Simple Local Declarations

We extend the statement language by the following productions:

We can, hence, declare integer variables and one-dimensional integer arrays for use in the
following statement. An integer variable should be bound to a location in the symbol table, so
this declaration should add such a binding to vtable. An array should be bound to a variable

Furthermore, code must be generated for allocating space for the array. We assume arrays are
allocated and that the intermediate-code variable HP points to the first free element of the

The Translation of Simple Declarations shown in Figure 4.

: Represented the Translation of Simple Declarations

level intermediate languages are often used in functional and logical languages, and they
frequently converted into lower-level intermediate code before being output as machine

code.The Java Virtual Machine is another high-level intermediate language
complicated tasks as invoking virtual methods and generating new objects, this langua

level design was selected for several reasons:

By breaking up typical complicated processes into single instructions, the code is
made smaller, which cuts down on the amount of time it takes to transmit over the

JVM was designed from the start with interpretation in mind, and the intricate
processes also served to lessen the burden of interpretation.

A programme in the JVM is validated, or kind of type-checked, before being
interpreted or translated further. When the code is high-level, this is simpler.

126 Basics in Compiler Design

dimensional integer arrays for use in the
following statement. An integer variable should be bound to a location in the symbol table, so

be bound to a variable

Furthermore, code must be generated for allocating space for the array. We assume arrays are
the first free element of the

: Represented the Translation of Simple Declarations.

level intermediate languages are often used in functional and logical languages, and they
level intermediate code before being output as machine

level intermediate language. For such
complicated tasks as invoking virtual methods and generating new objects, this language has a

By breaking up typical complicated processes into single instructions, the code is
made smaller, which cuts down on the amount of time it takes to transmit over the

JVM was designed from the start with interpretation in mind, and the intricate

checked, before being
level, this is simpler.

127 Basics in Compiler Design

Compiler Design - Code Generation

With a few exceptions, the intermediate language we used in chapter 7 is fairly low-level and

comparable to the kind of machine code seen on contemporary RISC processors.

• Whereas a CPU will have a limited number of registers, we have employed an

infinite amount of variables.

• To call functions, a complicated CALL instruction was employed.On most

processors, the conditional jump instruction has an online target label and simply

jumps to the next instruction when the condition is false. In the intermediate

language, the IF-THEN-ELSE instruction has two target labels.

• Any constant may serve as an operand for arithmetic instruction, as was previously

thought. RISC processors often only accept tiny constants as operands. Register

allocation addresses the issue of fitting a high number of variables into a limited

number of registers.

Transforming each intermediate-language instruction into one or more machine-code instructions

is the easiest way to create machine code from intermediate code. But it's often feasible to

combine two or more intermediate-language commands into a single machine-code instruction.

We will also quickly go through various improvements.

Exploiting Complex Instructions

Most instructions in our intermediate language are atomic, in the sense that each instruction

corresponds to a single operation which cannot sensibly be split into smaller steps. The

exceptions to this rule are the instructions IF-THEN-ELSE, which described how to handle it,

and CALL. (CISC) Complex Instruction Set Computer processors like IA-32 have composite

(i.e., non-atomic) instructions in abundance. And while the philosophy behind (RISC) Reduced

Instruction Set Computer processors like MIPS and ARM advocates that machine-code

instructions should be simple, most RISC processors include at least a few non-atomic

instructions, typically for memory-access instructions. We will in this chapter use a subset of the

MIPS instruction set as an example. A description of the MIPS instruction set can be found

Appendix A of [39], which is available online [27]. If you are not already familiar with the MIPS

instruction set, it would be a good idea to read the description before continuing. To exploit

composite instructions, several intermediate-language instructions can be grouped and translated

into a single machine-code instruction. For example, the intermediate-language instruction

sequence:

t2 := t1 +116

t3 := M[t2]

can be translated into a single MIPS instruction:

lw r3, 116(r1)

Where, r1 and r3 are the registers chosen for t1 and t3, respectively. However, because the

combined instruction doesn't save this value anywhere, combining the two instructions can only

128 Basics in Compiler Design

be done if the value of the intermediate variable t2 is not likely to be required in the future.

Therefore, we will need to know if a variable's contents are needed for future usage or whether

they become useless after a certain use. Most of the temporary variables that even the compiler

adds during the generation of intermediate code will be single-use and may be designated as

such. A single-use variable will always be used at the last time. As an alternative, last-use data

may very well be discovered by doing a livens analysis on the intermediate code. We'll merely

assume for the foreseeable being that the intermediate code signifies the variable's latest usage.

Assuming that this is the case, the final usage of any variable in the intermediate code is denoted

by last, as in the case of the variable t, which is denoted by ‘t’ last.

The next step is to translate each machine-code instruction into one or more instructions in an

intermediate language. Since the goal is to locate sequences in the intermediate code that fit the

pattern and replace these sequences with instances of the replacement, we refer to the sequence

of intermediate language instructions as a pattern and the accompanying machine-code

instruction as its replacement.

If the same variable is used in both the pattern and the replacement, it means that the

commensurate intermediate-language variable/label constant name is copied to the computer

processor, where it will represent a constant, a named register, or a machine-code label. Patterns

that use variables like "k," "t," or "rd" can match any approximate language constants, variables,

or labels.

Two-address Instructions

In the last section, we assumed that machine code is a three-address code, meaning that an

instruction's destination register might be different from its two operand registers. However, it is

typical for processors to employ a two-address code, in which the destination register and the

first operand register are identical. We employ pattern or replacement pairs to address this, such

as these:

rt := rs movrt , rs

rt := rt +rs add rt ,rs

rd:= rs +rt
move rd, rs

add rd,rt

In situations when the destination register is different from the first operand, this add copy

instruction is used. We'll see that by assigning ‘rd’ and ‘rs’ to the same register, the register

allocator may often get rid of the extra copy instruction.

Similar techniques may be used by processors that partition registers into data and address

registers or integer and floating-point registers: Before operations, add instructions that copy to

new registers, then allow register allocation and assign them to the appropriate types of registers,

removing as many movements as feasible.

129 Basics in Compiler Design

Optimizations

A compiler has three possible optimization locations: the source code, the abstract syntax, the

intermediate code, and the machine code. Some optimizations may be unique to the source

language or the machine language, but it makes sense to focus on the intermediate language

since all compilers that use the same intermediate language may benefit from the optimizations.

Additionally, the work required to do optimizations is reduced since the intermediate language is

often simpler than both the source language and the machine language. Although many other

optimizations optimizing compilers might use, we will just briefly touch on a few of them.

Common Sub expression Elimination

In the statement,a[i]:= a[i]+2, the address for a[i] is calculated twice. By saving the address in a

temporary variable when the address is initially computed and using this variable rather than

recalculating the address, this duplicate computation may be avoided. Simple approaches for

common sub-expression removal only function on basic blocks, or lines of code without labels or

jumps, while more sophisticated techniques may remove redundant computations even when

they cross jumps.

Code Hoisting

If part of the computation inside a loop is independent of the variables that change inside the

loop, it can be moved outside the loop and only calculated once. For example, in the loop

while (j < k) {

 sum = sum + a[i][j];

j++;

}

A large part of the address calculation for a[i][j] can be done without knowing j. This part can be
moved outside the loop so it will only be calculated once. Note that this optimization ca not be
done on the source-code level, as the address calculations are not visible there. For the same
reason, the optimized version is not shown here. If k may be less than or equal to j, the loop body
may never be entered and we may, hence, unnecessarily execute the code that was moved out of
the loop. This might even generate a run-time error. Hence, we can unroll the loop once to:

if (j < k) {

 sum = sum + a[i][j];

j++;

 while (j < k) {

 sum = sum + a[i][j];

j++;

}

}

130 Basics in Compiler Design

The loop-independent part(s) may now without risk be calculated in the unrolled part and reused

in the non-unrolled part. Again, this optimization is not shown.

Constant Propagation

A variable may, at some points in the program, have a value that is always equal to a known

constant. When such a variable is used in a calculation, this calculation can often be simplified

after replacing the variable with the constant that is guaranteed to be its value. Furthermore, the

variable that holds the results of this computation may now also become constant, which may

enable even more compile-time reduction. Constant-propagation algorithms first trace the flow

of constant values through the program, and then reduce calculations. More advanced methods

also look at conditions, so they can exploit that after a test on, e.g., x = 0, x is, indeed, the

constant 0.

Index-Check Elimination

Some compilers insert runtime checks to catch cases when an index is outside the bounds of the

array. Some of these checks can be removed by the compiler. One way of doing this is to see if

the tests on the index are subsumed by earlier tests or ensured by assignments. For example,

assume that, in the loop shown above, ‘a’ is declared to be a ‘k × k’ array. This means that the

entry test for the loop will ensure that “j” is always less than the upper bound on the array, so this

part of the index test can be eliminated. If “j” is initialized to 0 before entering the loop, we can

use this to conclude that we do not need to check the lower bound either.

Register Allocation

We freely employed as many variables as we deemed practical and simply converted

intermediate language variables into machine language registers one-to-one. However, as

processors have a limited amount of registers, register allocation is required to resolve this

problem. To fit a lot of variables into a limited number of registers is the goal of register

allocation. Usually, this may be accomplished by allowing many variables to share a single

register, but sometimes, the processor may not have enough registers. Some of the variables in

this situation need to be temporarily saved in memory. Before creating the machine code, register

allocation may either be done in the intermediate language or the machine language.

In the latter scenario, registers are first identified by symbolic names in the machine code, which

are then converted to register numbers by the register allocation. The benefit of doing register

allocation in the intermediate language is that several target computers may readily utilize the

same register allocator it just needs to be parameterized with the set of available registers.

Allocating registers later, after the machine code has been written, could have benefits. We

learned in chapter 8 that many instructions may be merged into a single instruction, which may

cause a variable to vanish. There is no need to assign a register to this variable, but we shall do it

in the intermediate language if register allocation is used. Additionally, when an instruction in an

intermediate language needs to be converted into a series of instructions in machine code, the

machine code might require an additional register or two for temporary values like the register

required to store the outcome of the SLT instruction when converting a jump on to MIPS code.

There must thus always be at least one extra register available for use as temporary storage,

according to the register allocator.

Liveness

This idea was previously alluded to in chapter 8 when we discussed the final applications of
variables. In general, two variables may shar
time in the program. Later, we'll define it more precisely. To identify whether a variable is live,
we may use the following rules:

• A variable must be live
a variable.

• If a variable is given a value in an instruction but isn't used as an operand, the
variable is considered dead at the beginning of the instruction since the value it now
contains isn't utilized before it is overwritten.

• If a variable is active a
variable is active at the beginning of the instruction as well.

• A variable is alive at the termination of an instruction if
any of the procedures that follow it straightaway.

Liveness Analysis

We can formalize the above rules as equations over sets of variables. The process of solving

these equations is called livens analysis, and will at any giv

which variables are live at this point. To better speak of points in a program, we number

instructions as in Figure 5. For every instruction in the program, we have a set of successors, i.e.,

instructions that may immediately follow the instruction during execution. We denote the set of

successors to the instruction numbered i as succ[i]. We use the

Figure 5: Represented that the Example Program for Liveness Analysis and

Basics in Compiler Design

There must thus always be at least one extra register available for use as temporary storage,

according to the register allocator.

This idea was previously alluded to in chapter 8 when we discussed the final applications of
variables. In general, two variables may share a register if they are never both active at the same
time in the program. Later, we'll define it more precisely. To identify whether a variable is live,

A variable must be live at the beginning of an instruction if it utilizes the contents of

If a variable is given a value in an instruction but isn't used as an operand, the
variable is considered dead at the beginning of the instruction since the value it now

isn't utilized before it is overwritten.

If a variable is active after a command but is not given a value by that instruction, the
variable is active at the beginning of the instruction as well.

A variable is alive at the termination of an instruction if it is alive at the beginning of
any of the procedures that follow it straightaway.

We can formalize the above rules as equations over sets of variables. The process of solving

these equations is called livens analysis, and will at any given point in the program determine

which variables are live at this point. To better speak of points in a program, we number

. For every instruction in the program, we have a set of successors, i.e.,

diately follow the instruction during execution. We denote the set of

successors to the instruction numbered i as succ[i]. We use the following rules to find succ[i]

: Represented that the Example Program for Liveness Analysis and

Register Allocation.

131 Basics in Compiler Design

There must thus always be at least one extra register available for use as temporary storage,

This idea was previously alluded to in chapter 8 when we discussed the final applications of
a register if they are never both active at the same

time in the program. Later, we'll define it more precisely. To identify whether a variable is live,

at the beginning of an instruction if it utilizes the contents of

If a variable is given a value in an instruction but isn't used as an operand, the
variable is considered dead at the beginning of the instruction since the value it now

a command but is not given a value by that instruction, the

it is alive at the beginning of

We can formalize the above rules as equations over sets of variables. The process of solving

en point in the program determine

which variables are live at this point. To better speak of points in a program, we number all

. For every instruction in the program, we have a set of successors, i.e.,

diately follow the instruction during execution. We denote the set of

following rules to find succ[i]:

: Represented that the Example Program for Liveness Analysis and

• The instruction numbered j (if any) that is listed just after instruction number ‘i’ is in
succ[i], unless i is a GOTO or IF
numbered consecutively, j = i+1.

• If instruction number ‘i’ is of the form GOTO l,
LABEL l is in succ[i]. Note that there in a correct program will be exactly one
LABEL instruction with the label used by the GOTO instruction.

• If instruction i is IF p THEN l
and LABEL lf are in succ[i].

Note that we assume that both outcomes of an IF
happens not to be the case i.e., if the condition is always true or always false), our liveness
analysis may claim that a variable is live when it is in fact dead. This is no major problem, as the
worst that can happen is that we use a register for a variable that is not going to be used after all.
The converse claiming a variable dead when it is, in fact, live is worse, as we ma
value that could be used later on, and hence get wrong results from the program.

Precise liveness information depends on knowing exactly which paths a program may take
through the code when executed, and this is not possible to compute exact
undecidable problem, so it is quite reasonable to allow imprecise results from a liveness analysis,
as long as we err on the side of safety, i.e., calling a variable live unless we can prove it to be
dead For every instruction i, we hav
instruction i and, hence, are live at the start of the instruction. In other words, gen[i] is the set of
variables that instruction i generates liveness for. We also have a set kill[i] that list
that may be assigned a value by the instruction. Table
kill[i] for the types of instruction found in intermediate code. x, y and z are (possibly identical)
variables and k denotes a constant.

Table 1: Represented that the Gen and Kill Sets

For each instruction ‘i’, we use two sets to hold the actual liveness information: in[i] holds the
variables that are live at the start of ‘i’, and out[i] holds the variables that are live at the end of i.
We define these by the following equations:

Basics in Compiler Design

The instruction numbered j (if any) that is listed just after instruction number ‘i’ is in
succ[i], unless i is a GOTO or IF-THEN-ELSE instruction. If instructions are
numbered consecutively, j = i+1.

If instruction number ‘i’ is of the form GOTO l, (the number of) the instruction
LABEL l is in succ[i]. Note that there in a correct program will be exactly one
LABEL instruction with the label used by the GOTO instruction.

If instruction i is IF p THEN lt ELSE lf, (the numbers of) the instructions
are in succ[i].

Note that we assume that both outcomes of an IF-THEN-ELSE instruction are possible. If this
happens not to be the case i.e., if the condition is always true or always false), our liveness

able is live when it is in fact dead. This is no major problem, as the
worst that can happen is that we use a register for a variable that is not going to be used after all.
The converse claiming a variable dead when it is, in fact, live is worse, as we ma
value that could be used later on, and hence get wrong results from the program.

depends on knowing exactly which paths a program may take
through the code when executed, and this is not possible to compute exactly it is a formally
undecidable problem, so it is quite reasonable to allow imprecise results from a liveness analysis,
as long as we err on the side of safety, i.e., calling a variable live unless we can prove it to be
dead For every instruction i, we have a set gen[i], which lists the variables that may be read by
instruction i and, hence, are live at the start of the instruction. In other words, gen[i] is the set of
variables that instruction i generates liveness for. We also have a set kill[i] that list

e by the instruction. Table 1 shows which variables are in gen[i] and
kill[i] for the types of instruction found in intermediate code. x, y and z are (possibly identical)
variables and k denotes a constant.

1: Represented that the Gen and Kill Sets.

For each instruction ‘i’, we use two sets to hold the actual liveness information: in[i] holds the
variables that are live at the start of ‘i’, and out[i] holds the variables that are live at the end of i.

define these by the following equations:

132 Basics in Compiler Design

The instruction numbered j (if any) that is listed just after instruction number ‘i’ is in
ELSE instruction. If instructions are

(the number of) the instruction
LABEL l is in succ[i]. Note that there in a correct program will be exactly one

, (the numbers of) the instructions LABEL lt

ELSE instruction are possible. If this
happens not to be the case i.e., if the condition is always true or always false), our liveness

able is live when it is in fact dead. This is no major problem, as the
worst that can happen is that we use a register for a variable that is not going to be used after all.
The converse claiming a variable dead when it is, in fact, live is worse, as we may overwrite a
value that could be used later on, and hence get wrong results from the program.

depends on knowing exactly which paths a program may take
ly it is a formally

undecidable problem, so it is quite reasonable to allow imprecise results from a liveness analysis,
as long as we err on the side of safety, i.e., calling a variable live unless we can prove it to be

e a set gen[i], which lists the variables that may be read by
instruction i and, hence, are live at the start of the instruction. In other words, gen[i] is the set of
variables that instruction i generates liveness for. We also have a set kill[i] that lists the variables

shows which variables are in gen[i] and
kill[i] for the types of instruction found in intermediate code. x, y and z are (possibly identical)

For each instruction ‘i’, we use two sets to hold the actual liveness information: in[i] holds the
variables that are live at the start of ‘i’, and out[i] holds the variables that are live at the end of i.

These equations are recursive. We solve these by fixed
We initialize all in[i] and out[i] to be empty sets and repeatedly calculate new
until no changes occur. This will eventually happen since we work with sets with finite support
that is a finite number of possible values and because adding elements to the sets out[i] or in[j]
on the right-hand sides of the equations ca
left-hand sides. Since we can only add elements to a set a limited number of times, each iteration
will either leave all sets untouched, in which case we are finished, or it will add items to some
set. It is also clear that the sets that are produced are a solution to the equation, and thus the last
iteration effectively confirms the validity of the equations.

Table 2: Represented the succ, gen and kill for the Program.

We create a particular case: out
variables that are live after the programme. S
is normally the case for any instruction that terminates the programme. The Nth
number is calculated using the procedure in Table 2
to N before execution). A will contain the Nth fibonacci number when the programme terminates
by getting to instruction 13, making a live variable a
instruction 13 has no predecessors (succ[13] = 0/).

Equation defines all other out sets, while equation
initialised to the empty set before iterating until a fixed
we process the instructions does not affect
impact on how fast we arrive at the fixedpoint. It is wise to do the evaluation in reverse
instruction sequence and to compute out[i] before in[i), since the data pas
programme backwards. In the example, this indicates that we will compute the sets in the order
shown in each iteration. are utilised when a value originates from a higher instruction number
because the most recent values are used when computing the

We can see that the outcome from iteration 3 is identical to that from iteration 2. We see that n is
live at program startup, which is reasonable given that n is anti

Basics in Compiler Design

in[i] = gen[i]∪∪∪∪(out[i] \ kill[i])

These equations are recursive. We solve these by fixed-point iteration, as shown in appendix A:
We initialize all in[i] and out[i] to be empty sets and repeatedly calculate new
until no changes occur. This will eventually happen since we work with sets with finite support
that is a finite number of possible values and because adding elements to the sets out[i] or in[j]

hand sides of the equations cannot reduce the number of elements in the sets on the
hand sides. Since we can only add elements to a set a limited number of times, each iteration

will either leave all sets untouched, in which case we are finished, or it will add items to some
It is also clear that the sets that are produced are a solution to the equation, and thus the last

iteration effectively confirms the validity of the equations.

: Represented the succ, gen and kill for the Program.

We create a particular case: out[i], where I have no predecessor, is defined to be the set of all
the programme. Similarly ill-defined if succ[i] is the empty set, which

is normally the case for any instruction that terminates the programme. The Nth
sing the procedure in Table 2. (where N is given as input by initialising n

execution). A will contain the Nth fibonacci number when the programme terminates
by getting to instruction 13, making a live variable after the programme. We set out[13] = a since
instruction 13 has no predecessors (succ[13] = 0/).

her out sets, while equation describes all in sets. All in and out sets are
initialised to the empty set before iterating until a fixed point is reached. The sequence in which

does not affect the iteration's eventual outcome, but it may have an
impact on how fast we arrive at the fixedpoint. It is wise to do the evaluation in reverse

compute out[i] before in[i), since the data pas
programme backwards. In the example, this indicates that we will compute the sets in the order
shown in each iteration. are utilised when a value originates from a higher instruction number

cause the most recent values are used when computing the right-hand sides, respectively.

We can see that the outcome from iteration 3 is identical to that from iteration 2. We see that n is
startup, which is reasonable given that n is anticipated to store

133 Basics in Compiler Design

point iteration, as shown in appendix A:
We initialize all in[i] and out[i] to be empty sets and repeatedly calculate new values for these
until no changes occur. This will eventually happen since we work with sets with finite support
that is a finite number of possible values and because adding elements to the sets out[i] or in[j]

nnot reduce the number of elements in the sets on the
hand sides. Since we can only add elements to a set a limited number of times, each iteration

will either leave all sets untouched, in which case we are finished, or it will add items to some
It is also clear that the sets that are produced are a solution to the equation, and thus the last

: Represented the succ, gen and kill for the Program.

no predecessor, is defined to be the set of all
defined if succ[i] is the empty set, which

is normally the case for any instruction that terminates the programme. The Nth Fibonacci
. (where N is given as input by initialising n

execution). A will contain the Nth fibonacci number when the programme terminates
the programme. We set out[13] = a since

describes all in sets. All in and out sets are
point is reached. The sequence in which

the iteration's eventual outcome, but it may have an
impact on how fast we arrive at the fixedpoint. It is wise to do the evaluation in reverse

compute out[i] before in[i), since the data passes through the
programme backwards. In the example, this indicates that we will compute the sets in the order
shown in each iteration. are utilised when a value originates from a higher instruction number

, respectively.

We can see that the outcome from iteration 3 is identical to that from iteration 2. We see that n is
cipated to store program input.

134 Basics in Compiler Design

When a variable that is not supposed to store input is active at the beginning of a program, it may
be utilized in some program executions before it has been initialized. This is often regarded as a
mistake since it may result in unforeseen outcomes and even security problems. Uninitialized
variable warnings may be sent by certain compilers, while others may include instructions to
initialize such variables to a default value usually 0.

135 Basics in Compiler Design

CHAPTER 15

AN OVERVIEW OF THE SCANNING IN COMPILER DESIGN

Dr. Uthama Kumar A

Assistant Professor, Department of Data Science & Analytics, School of Sciences,

Jain (Deemed-to-be University), Bangalore-27, India

Email Id- uthamakumar.a@jainuniversity.ac.in

Scanning is the process of identifying tokens from the raw text source code of a program. At first

glance, scanning might seem trivial after all, identifying words in a natural language is as simple

as looking for spaces between letters. However, identifying tokens in source code requires the

language designer to clarify many fine details, so that it is clear what is permitted and what is

not. Most languages will have tokens in these categories:

i. Keywords are words in the language structure itself, like while or class or true.

Keywords must be chosen carefully to reflect the natural structure of the language,

without interfering with the likely names of variables and other identifiers.

ii. Identifiers are the names of variables, functions, classes, and other code elements

chosen by the programmer. Typically, identifiers are arbitrary sequences of letters

and possibly numbers. Some languages require identifiers to be marked with a

sentinel (like the dollar sign in Perl) to clearly distinguish identifiers from

keywords.

iii. Numbers could be formatted as integers, or floating point values, or fractions, or in

alternate bases such as binary, octal or hexadecimal. Each format should be clearly

distinguished, so that the programmer does not confuse one with the other.

iv. Strings are literal character sequences that must be clearly distinguished from

keywords or identifiers. Strings are typically quoted with single or double quotes,

but also must have some facility for containing quotations, newlines, and

unprintable characters.

v. Comments and whitespace are used to format a program to make it visually clear,

and in some cases (like Python) are significant to the structure of a program.

When designing a new language, or designing a compiler for an existing language, the first job is

to state precisely what characters are permitted in each type of token. Initially, this could be done

informally by stating,for example, “An identifier consists of a letter followed by any number of

letters and numerals.”, and then assigning a symbolic constant (TOKEN IDENTIFIER) for that

kind of token. As we will see, an informal approach is often ambiguous, and a more rigorous

approach is needed.

A Hand-Made Scanner

To keep things simple, we only consider just a few tokens: * for multiplication,! for logical-not,

!= for not-equal, and sequences of letters and numbers for identifiers. The basic approach is to

read one character at a time from the input stream (fgetc(fp)) and then classify it. Some single

character tokens are easy: if the scanner reads

MULTIPLY, and the same would be true for addition, subtraction, and so forth. However, some

characters are part of multiple tokens. If the scanner encounters! that could represent a logical

not operation by itself, or it could be the first character in the != sequence representing not

to.

Upon reading !, the scanner must immediately read the next character. If the next character is =,

then it has matched the sequence != and returns

Figure 8.1: Represented that that the

But, if the character following! is something else, then the non

put back on the input stream using ungetc, because it is not part of the current token. The sca

returns TOKEN NOT and will consume the put

In a similar way, once a letter has been identified by is alpha(c), then the scanner keeps reading

letters or numbers, until a non-matching character is found. T

back, and the scanner returns TOKEN IDENTIFIER.

Basics in Compiler Design

read one character at a time from the input stream (fgetc(fp)) and then classify it. Some single

character tokens are easy: if the scanner reads a * character, it immediately returns TOKEN

MULTIPLY, and the same would be true for addition, subtraction, and so forth. However, some

characters are part of multiple tokens. If the scanner encounters! that could represent a logical

lf, or it could be the first character in the != sequence representing not

Upon reading !, the scanner must immediately read the next character. If the next character is =,

then it has matched the sequence != and returns TOKEN NOT EQUAL.

8.1: Represented that that the A Simple Hand Made Scanner Code.

But, if the character following! is something else, then the non-matching character needs to be

put back on the input stream using ungetc, because it is not part of the current token. The sca

returns TOKEN NOT and will consume the put-back character on the next call to scan token.

In a similar way, once a letter has been identified by is alpha(c), then the scanner keeps reading

matching character is found. The non-matching character is put

back, and the scanner returns TOKEN IDENTIFIER.

136 Basics in Compiler Design

read one character at a time from the input stream (fgetc(fp)) and then classify it. Some single-

a * character, it immediately returns TOKEN

MULTIPLY, and the same would be true for addition, subtraction, and so forth. However, some

characters are part of multiple tokens. If the scanner encounters! that could represent a logical-

lf, or it could be the first character in the != sequence representing not-equal-

Upon reading !, the scanner must immediately read the next character. If the next character is =,

A Simple Hand Made Scanner Code.

matching character needs to be

put back on the input stream using ungetc, because it is not part of the current token. The scanner

back character on the next call to scan token.

In a similar way, once a letter has been identified by is alpha(c), then the scanner keeps reading

matching character is put

137 Basics in Compiler Design

(We will see this pattern come up in every stage of the compiler: an unexpected item doesn’t

match the current objective, so it must be put back for later. This is known more generally as

backtracking.)

As you can see, a hand-made scanner is rather verbose. As more token types are added, the code

can become quite convoluted, particularly if tokens share common sequences of characters. It

can also be difficult for a developer to be certain that the scanner code corresponds to the desired

definition of each token, which can result in unexpected behavior on complex inputs. That said,

for a small language with a limited number of tokens, a hand-made scanner can be an appropriate

solution.

For a complex language with a large number of tokens, we need a more formalized approach to

defining and scanning tokens. A formal approach will allow us to have a greater confidence that

token definitions do not conflict and the scanner is implemented correctly. Further, a formal

approach will allow us to make the scanner compact and high performance surprisingly, the

scanner itself can be the performance bottleneck in a compiler, since every single character must

be individually considered. The formal tools of regular expressions and finite automata allow us

to state very precisely what may appear in a given token type. Then, automated tools can process

these definitions, find errors or ambiguities, and produce compact, high performance code.

Regular Expressions

Regular expressions (REs) are a language for expressing patterns. They were first described in

the 1950s by Stephen Kleene as an element of his foundational work in automata theory and

computability. Today, REs are found in slightly different forms in programming languages

(Perl), standard libraries (PCRE), text editors (vi), command-line tools (grep), and many other

places. We can use regular expressions as a compact and formal way of specifying the tokens

accepted by the scanner of a compiler, and then automatically translate those expressions into

working code. While easily explained, REs can be a bit tricky to use, and require some practice

in order to achieve the desired results.Here are a few examples using just the basic rules which is

mention in Table 1. (Note that a finite RE can indicate an infinite set.)

Table 1: Represented that the Basic Rules of Regular Expression.

Regular Expression s Language L(s)

hello { hello }

d(o|i)g { dog,dig }

moo* { mo,moo,mooo,... }

(moo)* { ε,moo,moomoo,moomoomoo,... }

a(b|a)*a { aa,aaa,aba,aaaa,aaba,abaa,... }

The syntax described so far is entirely sufficient to write any regular expression. But, it is also

handy to have a few helper operations built on top of the basic syntax:

• s? indicates that s is optional.

• s? can be written as (s| ε)

• s+ indicates that s is repeated one or more times.

• s+ can be written as ss*

• [a-z] indicates any character in that range.

• [a-z] can be written as (a|b|...|z)

• [ˆx] indicates any character except one.

• [ˆx] can be written as Σ –

Regular expressions also obey several algebraic properties, which make it possible to re
them as needed for efficiency or clarity:

Associativity: a|(b|c) = (a|b)|c

Commutativity: a|b = b|a

Distribution: a(b|c) = ab|ac

Idempotency: a** = a*

Using regular expressions, we can precisely state what is permitted in a given token. Suppose we
have a hypothetical programming language with the following informal definitions and regular
expressions. For each token type, we show exa
regular expression which is mention in below box

Basics in Compiler Design

The syntax described so far is entirely sufficient to write any regular expression. But, it is also

handy to have a few helper operations built on top of the basic syntax:

indicates that s is optional.

s+ indicates that s is repeated one or more times.

z] indicates any character in that range.

z] can be written as (a|b|...|z)

[ˆx] indicates any character except one.

– x

Regular expressions also obey several algebraic properties, which make it possible to re
them as needed for efficiency or clarity:

Using regular expressions, we can precisely state what is permitted in a given token. Suppose we
have a hypothetical programming language with the following informal definitions and regular
expressions. For each token type, we show examples of strings that match (and do not match) the

h is mention in below box.

138 Basics in Compiler Design

The syntax described so far is entirely sufficient to write any regular expression. But, it is also

Regular expressions also obey several algebraic properties, which make it possible to re-arrange

Using regular expressions, we can precisely state what is permitted in a given token. Suppose we
have a hypothetical programming language with the following informal definitions and regular

mples of strings that match (and do not match) the

Finite Automata

A finite automaton (FA) is an abstract machine that can be used to represent certain forms of
computation. Graphically, an FA consists of
circles) and a number of edges (represented by labeled arrows) between those states. Each edge
is labeled with one or more symbols drawn from an alphabet

The machine begins in a start state S
state indicated by the edge with the same label as the input symbol. Some states of the FA are
known as accepting states and are indicated by a double circle. If the FA is in an accepting state
after all input is consumed, then we say that the FA accepts the input. We say that the FA rejects
the input string if it ends in a non
current input symbol.

Every RE can be written as an FA, and vice versa. For
construct an FA by hand. For example, here is an FA for the keyword for:

Here is an FA for identifiers of the form [a

And here is an FA for numbers of the form ([1

Basics in Compiler Design

A finite automaton (FA) is an abstract machine that can be used to represent certain forms of
computation. Graphically, an FA consists of a number of states (represented by numbered
circles) and a number of edges (represented by labeled arrows) between those states. Each edge

mbols drawn from an alphabet Σ.

The machine begins in a start state S0. For each input symbol presented to the FA, it moves to the
state indicated by the edge with the same label as the input symbol. Some states of the FA are
known as accepting states and are indicated by a double circle. If the FA is in an accepting state

s consumed, then we say that the FA accepts the input. We say that the FA rejects
the input string if it ends in a non-accepting state, or if there is no edge correspondi

Every RE can be written as an FA, and vice versa. For a simple regular expression, one can
construct an FA by hand. For example, here is an FA for the keyword for:

Here is an FA for identifiers of the form [a-z][a-z0-9]+

And here is an FA for numbers of the form ([1-9] [0-9]*) | 0

139 Basics in Compiler Design

A finite automaton (FA) is an abstract machine that can be used to represent certain forms of
a number of states (represented by numbered

circles) and a number of edges (represented by labeled arrows) between those states. Each edge

symbol presented to the FA, it moves to the
state indicated by the edge with the same label as the input symbol. Some states of the FA are
known as accepting states and are indicated by a double circle. If the FA is in an accepting state

s consumed, then we say that the FA accepts the input. We say that the FA rejects
accepting state, or if there is no edge corresponding to the

a simple regular expression, one can

Deterministic Finite Automata

Each of these three examples is a deterministic finite automaton (DFA). A DFA is a special case

of an FA where every state has no more than one outgoing edge for a given symbol. P

way, a DFA has no ambiguity: for every combination

one choice of what to do next. Because of this property, a DFA is very easy to implement in

software or hardware. One integer (c) is needed to keep track of the current state.

The transitions between states are

given the current state and input symbol. (If the transition is not allowed, we mark it with E to

indicate an error.) For each symbol, we compute c = M[s, i] until all the input is consumed, o

error state is reached.

Nondeterministic Finite Automata

The alternative to a DFA is a nondeterministic finite automaton (NFA). An NFA is a perfectly

valid FA, but it has an ambiguity that makes it some

the regular expression [a-z]*ing, which represents a

It can be represented with the follow

Now consider how this automaton would consume the word sing. It could proceed in two

different ways. One would be to move to state 0 on s, state 1 on i, state 2 on n, and state 3 on g.

But the other, equally valid way would be to stay in state 0 the whole time, matching each letter

to the [a-z] transition. Both ways obey the transition rules, but one results in a

the other results in rejection.

The problem here is that state 0 allows for two different transitions on the symbol i. One is to

stay in state 0 matching [a-z] and the other is

simple rule by which we can pick one path or another. If the input is sing, the right solution is to

proceed immediately from state zero to state one on i. But if the input is singing, then we should

stay in state zero for the first ing and proceed to

anε(epsilon) transition, which represents the empty string. This transition can be taken without

consuming any input symbols at all. For example, we could represent the regular expression

a*(ab|ac) with this NFA:

Basics in Compiler Design

Each of these three examples is a deterministic finite automaton (DFA). A DFA is a special case

of an FA where every state has no more than one outgoing edge for a given symbol. P

biguity: for every combination of state and input symbol, there is exactly

one choice of what to do next. Because of this property, a DFA is very easy to implement in

software or hardware. One integer (c) is needed to keep track of the current state.

The transitions between states are represented by a matrix (M[s, i]) which encodes the next state,

given the current state and input symbol. (If the transition is not allowed, we mark it with E to

indicate an error.) For each symbol, we compute c = M[s, i] until all the input is consumed, o

inite Automata

The alternative to a DFA is a nondeterministic finite automaton (NFA). An NFA is a perfectly

an ambiguity that makes it somewhat more difficult to work with. Consider

z]*ing, which represents all lowercase words ending in the suffix

be represented with the following automaton:

Now consider how this automaton would consume the word sing. It could proceed in two

d be to move to state 0 on s, state 1 on i, state 2 on n, and state 3 on g.

But the other, equally valid way would be to stay in state 0 the whole time, matching each letter

z] transition. Both ways obey the transition rules, but one results in a

The problem here is that state 0 allows for two different transitions on the symbol i. One is to

z] and the other is to move to state 1 matching i. Moreover, there is no

ule by which we can pick one path or another. If the input is sing, the right solution is to

proceed immediately from state zero to state one on i. But if the input is singing, then we should

stay in state zero for the first ing and proceed to state one for the second. An NFA can also have

(epsilon) transition, which represents the empty string. This transition can be taken without

consuming any input symbols at all. For example, we could represent the regular expression

140 Basics in Compiler Design

Each of these three examples is a deterministic finite automaton (DFA). A DFA is a special case

of an FA where every state has no more than one outgoing edge for a given symbol. Put another

of state and input symbol, there is exactly

one choice of what to do next. Because of this property, a DFA is very easy to implement in

software or hardware. One integer (c) is needed to keep track of the current state.

represented by a matrix (M[s, i]) which encodes the next state,

given the current state and input symbol. (If the transition is not allowed, we mark it with E to

indicate an error.) For each symbol, we compute c = M[s, i] until all the input is consumed, or an

The alternative to a DFA is a nondeterministic finite automaton (NFA). An NFA is a perfectly

what more difficult to work with. Consider

case words ending in the suffix “ing.”

Now consider how this automaton would consume the word sing. It could proceed in two

d be to move to state 0 on s, state 1 on i, state 2 on n, and state 3 on g.

But the other, equally valid way would be to stay in state 0 the whole time, matching each letter

z] transition. Both ways obey the transition rules, but one results in acceptance, while

The problem here is that state 0 allows for two different transitions on the symbol i. One is to

Moreover, there is no

ule by which we can pick one path or another. If the input is sing, the right solution is to

proceed immediately from state zero to state one on i. But if the input is singing, then we should

An NFA can also have

(epsilon) transition, which represents the empty string. This transition can be taken without

consuming any input symbols at all. For example, we could represent the regular expression

This particular NFA presents a variet

“a” and stay in state zero. Or, it could take a

either way. There are two common wa

• The crystal ball interpretation suggests that the NFA somehow “knows” what the best
choice is, by some means external to the NFA itself. In the example above, the NFA
would choose whether to proceed to state zero, one, or four before consuming the first
character, and it would always make the right choice. Needless to say, this isn’t possible
in a real implementation.

• The many-worlds interpretation suggests that the NFA exists in all allowable states
simultaneously. When the input is complete, if any of thos
then the NFA has accepted the input. This interpretation is more useful for constructing a
working NFA, or converting it to a DFA.

Let us use the many-worlds interpret

aaac. Initially the NFA is in state zero. With

transition to states one or four. So, we can consider its initial sta

simultaneously. Continuing on, the NFA would traverse these

string aaac:

In principle, one can implement an

of the possible states. But this is inefficient.

states for all characters on each input transition. A better approac

equivalent DFA, as we show below:

Conversion Algorithms

Regular expressions and finite automata are all equally powerful. For every RE, there is an FA,

and vice versa. However, a DFA is by far the most straightforward of the three to implement in

software. In this section, we will show how to

DFA, and then to optimize the size of the DFA

Figure 1: Display the Relationship

Basics in Compiler Design

particular NFA presents a variety of ambiguous choices. From state zero, it could consume

te zero. Or, it could take a ε to state one or state four, and then consume

There are two common ways to interpret this ambiguity:

he crystal ball interpretation suggests that the NFA somehow “knows” what the best
choice is, by some means external to the NFA itself. In the example above, the NFA
would choose whether to proceed to state zero, one, or four before consuming the first

racter, and it would always make the right choice. Needless to say, this isn’t possible

worlds interpretation suggests that the NFA exists in all allowable states
simultaneously. When the input is complete, if any of those states are accepting states,
then the NFA has accepted the input. This interpretation is more useful for constructing a
working NFA, or converting it to a DFA.

worlds interpretation on the example above. Suppose that the input string

the NFA is in state zero. Without consuming any input, it could take an e

or four. So, we can consider its initial state to be all of those states

multaneously. Continuing on, the NFA would traverse these states until accepting the complete

States Action

0, 1, 4 consume a

0, 1, 2, 4, 5 consume a

0, 1, 2, 4, 5 consume a

0, 1, 2, 4, 5 consume c

6 accept

In principle, one can implement an NFA in software or hardware by simply keeping track of all

tates. But this is inefficient. In the worst case, we would need to evaluat

on each input transition. A better approach is to convert the NFA into an

quivalent DFA, as we show below:

Regular expressions and finite automata are all equally powerful. For every RE, there is an FA,

and vice versa. However, a DFA is by far the most straightforward of the three to implement in

software. In this section, we will show how to convert an RE into an NFA, then an NFA into a

DFA, and then to optimize the size of the DFA as display in Figure 1.

1: Display the Relationship between REs, NFAs, and DFAs

141 Basics in Compiler Design

y of ambiguous choices. From state zero, it could consume

d then consume an

he crystal ball interpretation suggests that the NFA somehow “knows” what the best
choice is, by some means external to the NFA itself. In the example above, the NFA
would choose whether to proceed to state zero, one, or four before consuming the first

racter, and it would always make the right choice. Needless to say, this isn’t possible

worlds interpretation suggests that the NFA exists in all allowable states
e states are accepting states,

then the NFA has accepted the input. This interpretation is more useful for constructing a

pose that the input string is

out consuming any input, it could take an epsilon

te to be all of those states

accepting the complete

keeping track of all

In the worst case, we would need to evaluate all

h is to convert the NFA into an

Regular expressions and finite automata are all equally powerful. For every RE, there is an FA,

and vice versa. However, a DFA is by far the most straightforward of the three to implement in

convert an RE into an NFA, then an NFA into a

REs, NFAs, and DFAs.

Converting REs to NFAs

To convert a regular expression to a

algorithm given first by McNaughton and Yamada, and then by Ken Thompson. We follow the

same inductive definition of regular expression as given earlier. First, we define automata

corresponding to the base cases of REs:

The NFA for any character “a” is: The NFA for a

Now, suppose that we have already constructed NFAs for the regular expressions A and B,

indicated below by rectangles. Both A and B have a single start sta

state (on the right). If we write the concatenation of A and B as AB, then the corresponding NFA

is simply A and B connected by an

combination, and the accepting state of B becomes the accepting state of the combination:

The NFA for the concatenation AB is:

In a similar fashion, the alternation of A

joined by common starting and acc

The NFA for the alternation A|B is:

Finally, the Kleene closure A* is constructed by taking the automaton for A, adding starting and

accepting nodes, then adding transitions to allow zero or more repetitions:

The NFA for the Kleene closure A* is:

Basics in Compiler Design

To convert a regular expression to a nondeterministic finite automaton, we can follow an

algorithm given first by McNaughton and Yamada, and then by Ken Thompson. We follow the

same inductive definition of regular expression as given earlier. First, we define automata

e cases of REs:

is: The NFA for a ε transition is:

Now, suppose that we have already constructed NFAs for the regular expressions A and B,

indicated below by rectangles. Both A and B have a single start state (on the left) and accepting

state (on the right). If we write the concatenation of A and B as AB, then the corresponding NFA

simply A and B connected by an ε transition. The start state of A becomes the start state of the

combination, and the accepting state of B becomes the accepting state of the combination:

The NFA for the concatenation AB is:

In a similar fashion, the alternation of A and B written as A|B can be ex-pressed as two automata

joined by common starting and accepting nodes, all connected by ε transitions:

The NFA for the alternation A|B is:

Finally, the Kleene closure A* is constructed by taking the automaton for A, adding starting and

ing nodes, then adding transitions to allow zero or more repetitions:

The NFA for the Kleene closure A* is:

142 Basics in Compiler Design

nondeterministic finite automaton, we can follow an

algorithm given first by McNaughton and Yamada, and then by Ken Thompson. We follow the

same inductive definition of regular expression as given earlier. First, we define automata

Now, suppose that we have already constructed NFAs for the regular expressions A and B,

te (on the left) and accepting

state (on the right). If we write the concatenation of A and B as AB, then the corresponding NFA

transition. The start state of A becomes the start state of the

combination, and the accepting state of B becomes the accepting state of the combination:

pressed as two automata

Finally, the Kleene closure A* is constructed by taking the automaton for A, adding starting and

Example. Let’s consider the process for an example regular expression a(cat|cow)*. First, we

start with the innermost expression cat and assemble

accepting state. Then, do the same thing for cow, yielding these two FAs:

The alternation of the two expressions cat|cow is accomplished by adding a new starting and

accepting node, with epsilon transitions. (The

highlight the previous graph components carried forward.)

Conversion Algorithms

Then, the Kleene closure (cat|cow)* is accomplished by adding another starting and accepting

state around the previous FA, with eps

Finally, the concatenation of a (cat|cow)* is achieved by adding a single state at the beginning

for a:

You can easily see that the NFA resul

complex and contains a large number of ep

a complete language could end up having thousands of states, which would be very impractical

to implement. Instead, we can convert this NFA into an equivalent DFA.

Converting NFAs to DFAs

We can convert any NFA into an equivalent DFA using the technique of subset construction. The

basic idea is to create a DFA such that each state in the DFA corresponds to multiple states in the

NFA, according to the “many-

consisting of states N and start state N0. We wish to construct an equivalent DFA consisting of

Basics in Compiler Design

Example. Let’s consider the process for an example regular expression a(cat|cow)*. First, we

start with the innermost expression cat and assemble it into three transitions resulting in an

accepting state. Then, do the same thing for cow, yielding these two FAs:

The alternation of the two expressions cat|cow is accomplished by adding a new starting and

accepting node, with epsilon transitions. (The boxes are not part of the graph, but simply

highlight the previous graph components carried forward.)

Then, the Kleene closure (cat|cow)* is accomplished by adding another starting and accepting

state around the previous FA, with epsilon transitions between:

Finally, the concatenation of a (cat|cow)* is achieved by adding a single state at the beginning

You can easily see that the NFA resulting from the construction algorithm, while correct, is quite

large number of epsilon transitions. An NFA representing the tokens for

a complete language could end up having thousands of states, which would be very impractical

to implement. Instead, we can convert this NFA into an equivalent DFA.

We can convert any NFA into an equivalent DFA using the technique of subset construction. The

basic idea is to create a DFA such that each state in the DFA corresponds to multiple states in the

-worlds” interpretation. Suppose that we begin with an NFA

consisting of states N and start state N0. We wish to construct an equivalent DFA consisting of

143 Basics in Compiler Design

Example. Let’s consider the process for an example regular expression a(cat|cow)*. First, we

it into three transitions resulting in an

The alternation of the two expressions cat|cow is accomplished by adding a new starting and

boxes are not part of the graph, but simply

Then, the Kleene closure (cat|cow)* is accomplished by adding another starting and accepting

Finally, the concatenation of a (cat|cow)* is achieved by adding a single state at the beginning

rithm, while correct, is quite

silon transitions. An NFA representing the tokens for

a complete language could end up having thousands of states, which would be very impractical

We can convert any NFA into an equivalent DFA using the technique of subset construction. The

basic idea is to create a DFA such that each state in the DFA corresponds to multiple states in the

e that we begin with an NFA

consisting of states N and start state N0. We wish to construct an equivalent DFA consisting of

states D and start state D0. Each D state will correspond to multiple N states. First, we define a

helper function known as the epsi

Epsilon closure.

ε−closure(n) is the set of NFA states reachable from NFA state n by zero or more

Now we define the subset construction algorithm. First, we create a start state D0 corresponding

to the ε–closure(N0). Then, for e

state containing the epsilon closure of the state’s reachable by c. More precisely:

Subset Construction Algorithm:

Given an NFA with states N and start state N

state D0.

Let D0 = ε−closure(N0).

Add D0 to a list.

While items remain on the list:

Let d be the next DFA state removed from the list.

 For each character c in Σ:

Let T contain all NFA states Nk such that:

Nj∈ d andNj→ Nk Create new DFA state D

If Di is not already in the list, add it to the end.

Figure 2: Representation of the Converting an NFA to a DFA via Subset Construction.

Basics in Compiler Design

states D and start state D0. Each D state will correspond to multiple N states. First, we define a

helper function known as the epsilon closure:

closure(n) is the set of NFA states reachable from NFA state n by zero or more

Now we define the subset construction algorithm. First, we create a start state D0 corresponding

closure(N0). Then, for each outgoing character c from the states in D0, we create a new

state containing the epsilon closure of the state’s reachable by c. More precisely:

Subset Construction Algorithm:

Given an NFA with states N and start state N0, create an equivalent DFA with states D and start

FA state removed from the list.

such that:

new DFA state Di = ε−closure (T)

is not already in the list, add it to the end.

: Representation of the Converting an NFA to a DFA via Subset Construction.

144 Basics in Compiler Design

states D and start state D0. Each D state will correspond to multiple N states. First, we define a

closure(n) is the set of NFA states reachable from NFA state n by zero or more ε transitions.

Now we define the subset construction algorithm. First, we create a start state D0 corresponding

ach outgoing character c from the states in D0, we create a new

state containing the epsilon closure of the state’s reachable by c. More precisely:

states D and start

: Representation of the Converting an NFA to a DFA via Subset Construction.

145 Basics in Compiler Design

Example. Let’s work out the algorithm on the NFA in Figure 2. This is the same NFA

corresponding to the RE a (cat|cow)* with each of the states numbered for clarity.

1. Compute D0 which is ε−closure (N0). N0 has no ε transitions, so

D0 = {N0}. Add D0 to the work list.

2. Remove D0 from the work list. The character “a” is an outgoing transition from N0 to
N1. ε −closure(N1) = {N1, N2, N3, N4, N8, N13} so add all of those to new state D1 and
add D1 to the work list.

3. Remove D1 from the work list. We can see that N4 → N5 and N8 → N9, so we create a
new state D2 = {N5, N9} and add it to the worklist.

4. Remove D2 from the work list. Both “a” and o are possible transitionsbecause of N5→
N6 and N9→ N10. So, create a new state D3 for theo transition to N6 and new state D5
for the “a” transition to N10. Addboth D3 and D5 to the work list.

5. Remove D3 from the work list. The only possible transition is N6→N7 so create a new
state D4 containing the ε –closure(N7) and add itto the work list.

6. Remove D5 from the work list. The only possible transition is N10→N11 so create a
new state D6 containing ε–closure(N11) and add it tothe work list.

7. Remove D4 from the work list, and observe that the only outgoing transition c leads to
states N5 and N9 which already exist as state D2, so simply add a transition D4→ D2.

8. Remove D6 from the work list and, in a similar way, add D6→ D2.

9. The work list is empty, so we are done.

Minimizing DFAs

The subset construction algorithm will definitely generate a valid DFA, but the DFA may
possibly be very large (especially if we began with a complex NFA generated from an RE.) A
large DFA will have a large transition matrix that will consume a lot of memory.

If it doesn’t fit in L1 cache, the scanner could run very slowly. To address this problem, we can
apply Hopcroft’s algorithm to shrink a DFA into a smaller (but equivalent) DFA.

The general approach of the algorithm is to optimistically group together all possibly-equivalent
states S into super-states T. Initially, we place all non-accepting S states into super-state T0 and
accepting states into super-state T1.

Then, we examine the outgoing edges in each state s∈Ti . If, a given character c has edges that
begin in Ti and end in different super-states, then we consider the super-state to be inconsistent
with respect to c. (Consider an impermissible transition as if it were a transition to TE, a super-
state for errors.)

The super-state must then be split into multiple states that are consistent with respect to c. Repeat
this process for all super-states and all characters c ∈ Σ until no more splits are required.

Example. Suppose we have the following non
DFA:

We begin by grouping all of non
state 5 into another super-state, like this:

Now, we ask whether this graph is consistent with respect to all possible inputs, by referring
back to the original DFA. For example, we observe that, if we are in super
then an input of “a” always goes to state 2, which keeps us within the super
consistent with respect to a. However, from super
within the super-state or go to super
fix this, we try splitting out one of the inconsistent states (4) into a new super
transitions with it:

Basics in Compiler Design

Example. Suppose we have the following non-optimized DFA and wish to reduce it to a smaller

We begin by grouping all of non-accepting states 1, 2, 3, 4 into one super-state and the accepting
state, like this:

Now, we ask whether this graph is consistent with respect to all possible inputs, by referring
back to the original DFA. For example, we observe that, if we are in super-state (1,2,3,and 4)

goes to state 2, which keeps us within the super-state. So, this DFA is
consistent with respect to a. However, from super-state (1,2,3,and 4) an input of b can either stay

state or go to super-state (5). So, the DFA is inconsistent with r
fix this, we try splitting out one of the inconsistent states (4) into a new super

146 Basics in Compiler Design

optimized DFA and wish to reduce it to a smaller

state and the accepting

Now, we ask whether this graph is consistent with respect to all possible inputs, by referring
state (1,2,3,and 4)

state. So, this DFA is
state (1,2,3,and 4) an input of b can either stay

state (5). So, the DFA is inconsistent with respect to b. To
fix this, we try splitting out one of the inconsistent states (4) into a new super-state, taking the

Again, we examine each super-state for consistency with respect to each input character. Again,
we observe that super-state 1, 2, 3 is consistent with respect to a, but not consistent with respect
to b because it can either lead to state 3 or state 4. We attempt to fix this by splitting out state 2
into its own super-state, yielding this DFA.

Again, we examine each super
respect to the super-state, and therefore we have the minimal DFA.

Limits of Finite Automata

Regular expressions and finite automata are powerful and effective at recognizing simple
patterns in individual words or tokens, but they are not sufficient to analyze all of the structures
in a problem. For example, could you use a finite automaton to match an arbitrary number of
nested parentheses? It’s not hard to write out an FA that could mat
nested parentheses, like this:

But the key word is arbitrary! To match any number of parentheses would require an infinite

automaton, which is obviously impractical. Even if we were to apply some practical upper limit

(say, 100 pairs) the automaton would still be impractically large when combined with all the

other elements of a language that must be supported.

For example, a language like Python permits the nesting of parentheses () for precedence, curly

brackets {} to represent dictionaries, and square brackets [] to represent lists. An automaton to

match up to 100 nested pairs of each in arbitrary order would have 1,000,000 states!

So, we limit ourselves to using regular expressions and finite automata for the narrow purpos

identifying the words and symbols within a problem.

Using a Scanner Generator

Because a regular expression precisely describes all the allowable forms of a token, we can use a

program to automatically transform a set of regular expressions into code for a scanner. Such a

Basics in Compiler Design

state for consistency with respect to each input character. Again,
state 1, 2, 3 is consistent with respect to a, but not consistent with respect

to b because it can either lead to state 3 or state 4. We attempt to fix this by splitting out state 2
state, yielding this DFA.

h super-state and observe that each possible input is consistent with
state, and therefore we have the minimal DFA.

Regular expressions and finite automata are powerful and effective at recognizing simple
erns in individual words or tokens, but they are not sufficient to analyze all of the structures

in a problem. For example, could you use a finite automaton to match an arbitrary number of
? It’s not hard to write out an FA that could match, say, up to three pairs of

But the key word is arbitrary! To match any number of parentheses would require an infinite

automaton, which is obviously impractical. Even if we were to apply some practical upper limit

100 pairs) the automaton would still be impractically large when combined with all the

other elements of a language that must be supported.

For example, a language like Python permits the nesting of parentheses () for precedence, curly

sent dictionaries, and square brackets [] to represent lists. An automaton to

match up to 100 nested pairs of each in arbitrary order would have 1,000,000 states!

So, we limit ourselves to using regular expressions and finite automata for the narrow purpos

identifying the words and symbols within a problem.

Because a regular expression precisely describes all the allowable forms of a token, we can use a

program to automatically transform a set of regular expressions into code for a scanner. Such a

147 Basics in Compiler Design

state for consistency with respect to each input character. Again,
state 1, 2, 3 is consistent with respect to a, but not consistent with respect

to b because it can either lead to state 3 or state 4. We attempt to fix this by splitting out state 2

put is consistent with

Regular expressions and finite automata are powerful and effective at recognizing simple
erns in individual words or tokens, but they are not sufficient to analyze all of the structures

in a problem. For example, could you use a finite automaton to match an arbitrary number of
ch, say, up to three pairs of

But the key word is arbitrary! To match any number of parentheses would require an infinite

automaton, which is obviously impractical. Even if we were to apply some practical upper limit

100 pairs) the automaton would still be impractically large when combined with all the

For example, a language like Python permits the nesting of parentheses () for precedence, curly

sent dictionaries, and square brackets [] to represent lists. An automaton to

match up to 100 nested pairs of each in arbitrary order would have 1,000,000 states!

So, we limit ourselves to using regular expressions and finite automata for the narrow purpose of

Because a regular expression precisely describes all the allowable forms of a token, we can use a

program to automatically transform a set of regular expressions into code for a scanner. Such a

program is known as a scanner generator. The program Lex, deve

earliest examples of a scanner generator. Vern Paxson translated Lex into the C language to

create Flex, which is distributed under the Berkeley license and is widely used in Unix

operating systems today to generate sc

To use Flex, we write a specification of the scanner that is a mixture of regular expressions,

fragments of C code, and some specialized directives. The Flex program itself consumes the

specification and produces regular C code

section consists of arbitrary C code that will be placed at the beginning of scanner.c, like include

files, type definitions, and similar things. Typically, this is used to include a file that contain

symbolic constants for tokens.

The second section declares character cl

used regular expressions. For example,

referred to later as {DIGIT}.The third

expression for each type of token that you wish to match, followed by a fragment of C code that

will be executed whenever the expression is matched. In the simplest case, this code returns the

type of the token, but it can also be used to extract token values, display errors

appropriate.

The fourth section is arbitrary C code that will go at the end of the scanner, typically for

additional helper functions.

A peculiar requirement of Flex is that we must define a function yywrap() which returns 1 to

indicate that the input is complete at the end of the file. If we wanted to continue scanning in

another file, then yywrap() would o

The regular expression language accepted by Flex is very similar to that of formal regular

expressions discussed above. The main difference is that characters that have special meaning

with a regular expression (like parentheses, square brackets, and asteris

a backslash or surrounded with double quotes. Also, a period (.) can be used to match any

character at all, which is helpful

This specification describes just a few tokens: a single character addition (which must be escape

with a backslash), the while keyword, an iden

number consisting of one or more digits. As is typical in a scanner, any other type of character is

an error, and returns an explicit token type for that purpose

Basics in Compiler Design

program is known as a scanner generator. The program Lex, developed at AT&T, was one of the

earliest examples of a scanner generator. Vern Paxson translated Lex into the C language to

create Flex, which is distributed under the Berkeley license and is widely used in Unix

operating systems today to generate scanners implemented in C or C++.

To use Flex, we write a specification of the scanner that is a mixture of regular expressions,

fragments of C code, and some specialized directives. The Flex program itself consumes the

specification and produces regular C code that can then be compiled in the normal way.

section consists of arbitrary C code that will be placed at the beginning of scanner.c, like include

files, type definitions, and similar things. Typically, this is used to include a file that contain

The second section declares character classes, which are symbolic shorthand’s for commonly

used regular expressions. For example, you might declare DIGIT [0-9]. This class can b

The third section is the most important part. It states a regular

sion for each type of token that you wish to match, followed by a fragment of C code that

will be executed whenever the expression is matched. In the simplest case, this code returns the

f the token, but it can also be used to extract token values, display errors, or anything else

The fourth section is arbitrary C code that will go at the end of the scanner, typically for

Flex is that we must define a function yywrap() which returns 1 to

indicate that the input is complete at the end of the file. If we wanted to continue scanning in

another file, then yywrap() would open the next file and return 0.

anguage accepted by Flex is very similar to that of formal regular

expressions discussed above. The main difference is that characters that have special meaning

with a regular expression (like parentheses, square brackets, and asterisks) must be escaped wi

slash or surrounded with double quotes. Also, a period (.) can be used to match any

 for catching error conditions.

This specification describes just a few tokens: a single character addition (which must be escape

sh), the while keyword, an identifier consisting of one or more letters, and a

number consisting of one or more digits. As is typical in a scanner, any other type of character is

it token type for that purpose.

148 Basics in Compiler Design

loped at AT&T, was one of the

earliest examples of a scanner generator. Vern Paxson translated Lex into the C language to

create Flex, which is distributed under the Berkeley license and is widely used in Unix-like

To use Flex, we write a specification of the scanner that is a mixture of regular expressions,

fragments of C code, and some specialized directives. The Flex program itself consumes the

be compiled in the normal way. The first

section consists of arbitrary C code that will be placed at the beginning of scanner.c, like include

files, type definitions, and similar things. Typically, this is used to include a file that contains the

hand’s for commonly

This class can be

art. It states a regular

sion for each type of token that you wish to match, followed by a fragment of C code that

will be executed whenever the expression is matched. In the simplest case, this code returns the

, or anything else

The fourth section is arbitrary C code that will go at the end of the scanner, typically for

Flex is that we must define a function yywrap() which returns 1 to

indicate that the input is complete at the end of the file. If we wanted to continue scanning in

anguage accepted by Flex is very similar to that of formal regular

expressions discussed above. The main difference is that characters that have special meaning

ks) must be escaped with

slash or surrounded with double quotes. Also, a period (.) can be used to match any

This specification describes just a few tokens: a single character addition (which must be escaped

tifier consisting of one or more letters, and a

number consisting of one or more digits. As is typical in a scanner, any other type of character is

149 Basics in Compiler Design

Flex generates the scanner code, but not a complete program, so you must write a main function

to go with it. First, the main program must declare as extern the symbols it expects to use in the

generated scanner code: yyin is the file from which text will be read, yylex is the function that

implements the scanner, and the array yytext contains the actual text of each token discovered.

Finally, we must have a consistent definition of the token types across the parts of the program,

so into token.h we put an enumeration describing the new type token t. This file is included in

both scanner.flex and main.c.

Scanner.flex is converted into scanner.c by invoking flex -o scanner.cscanner.flex. Then, both

main.c and scanner.c are compiled to produce object files, which are linked together to produce

the complete program.

Practical Considerations

Handling keywords. In many languages, keywords such as while or if would otherwise match the

definitions of identifiers, unless specially handled. There are several solutions to this problem.

One is to enter a regular expression for every single keyword into the Flex specification. These

must precede the definition of identifiers, since Flex will accept the first expression that matches.

Another is to maintain a single regular expression that matches all identifiers and keywords. The

action associated with that rule can compare the token text with a separate list of keywords and

return the appropriate type. Yet another approach is to treat all keywords and identifiers as a

single token type, and allow the problem to be sorted out by the parser. This is necessary in

languages like PL/1, where identifiers can have the same names as keywords, and are

distinguished by context.

Tracking Source Locations

In later stages of the compiler, it is useful for the parser or type checker to know exactly what

line and column number a token was located at, usually to print out a helpful error message.

(“Undefined symbol spider at line 153.”) This is easily done by having the scanner match

newline characters, and increase the line count (but not return a token) each time one is found.

Cleaning Tokens

Strings, characters, and similar token types need to be cleaned up after they are matched. For

example, "hello\n" needs to have its quotes removed and the backslash-n sequence converted to a

literal newline character. Internally, the compiler only cares about the actual contents of the

string. Typically, this is accomplished by writing a function string clean in the post amble of the

Flex specification. The function is invoked by the matching rule before returning the desired

token type.

Constraining Tokens

Although regular expressions can match tokens of arbitrary length, it does not follow that a

compiler must be prepared to accept them. There would be little point to accepting a 1000-letter

identifier, or an integer larger than the machine’s word size. The typical approach is to set the

maximum token length (YYLMAX in flex) to a very large value, then examine the token to see

150 Basics in Compiler Design

if it exceeds a logical limit in the action that matches the token. This allows you to emit an error

message that describes the offending token as needed.

Error Handling

The easiest approach to handling errors or invalid input is simply to print a message and exit the

program. However, this is unhelpful to users of your compiler if there are multiple errors, it’s

(usually) better to see them all at once. A good approach is to match the minimum amount of

invalid text (using the dot rule) and return an explicit token type indicating an error. The code

that invokes the scanner can then emit a suitable message, and then ask for the next token.

151 Basics in Compiler Design

Related Question for Practice

1. What is compiler design?

2. Enlist various types of compiler?

3. What tools are used for compiler construction?

4. What is bootstrapping in compiler design?

5. What is yacc?

6. What is Relocatable Machine Code?

7. What is Lexical analysis?

8. What is Linker?

9. What is the List of compiler construction tools?

10. What is the regular expression of identifier?

11. Write the overview of the structure of a typical compiler?

12. Briefly explain what a semantic analyzer does?

152 Basics in Compiler Design

Reference of Books for Further Reading

1. Alfred V Aho and Ravi Sethi “Compilers: Principles, Techniques and Tools”.

2. Michael L Scott “Programming Language Pragmatics”.

3. Andrew W Appel “Modern Compiler Implementation in C/Java”.

4. Keith D Cooper and Linda Torczon “Engineering a Compiler”.

5. Allen I Holob “Compiler Design in C”.

	COVER
	CONTENTS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12
	CHAPTER 13
	CHAPTER 14
	CHAPTER 15

